

EEG infraslow neurofeedback training for pain management in people with knee osteoarthritis: a randomized sham-controlled feasibility clinical trial

Mathew J^{a,b}, Adhia D^{a,b}, De Ridder D^{a,b}, Mani R^a
^a School of Physiotherapy, University of Otago, New Zealand.

^b Department of Surgical Sciences/ BRAI³N Research Unit, Otago Medical School-DN Campus, University of Otago, New Zealand.

Centre for Health, Activity, and Rehabilitation Research School of Physiotherapy

" School of Physiotherapy, University of Otago, New Zealand.

INTRODUCTION

Electroencephalography (EEG) Infraslow Neurofeedback (ISF-NF) training is a novel tool designed to modulate cortical slow-wave activity to alter neural mechanisms linked to the pain experience. ISF-NF is a recent development in EEG NF training, focusing on modulating slow-wave activity (0.0–0.1 Hz). To date, no ISF-NF clinical trial has been performed for any musculoskeletal (MSK) pain conditions. Since the proposed ISF-NF training protocol is a novel intervention; a feasibility testing of the protocol in individuals with KOA is warranted

OBJECTIVES

To determine the feasibility, safety, and acceptability of administering EEG ISF-NF training in people with knee osteoarthritis (KOA) and determine the training-induced variability in pain, function, and EEG measures.

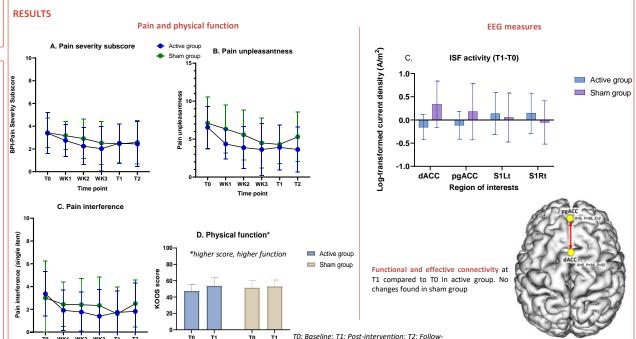
METHODS

Design: A parallel, two-armed double-blinded (participant and assessor) randomized sham-controlled feasibility clinical trial.

Inclusion criteria: Adults aged 44-75 years, with a clinical diagnosis of KOA; with pain (≥ 4 on an 11-point numerical rating scale) for a minimum duration of three months.

Baseline, post-intervention & follow-up measures: Pain (intensity, interference, unpleasantness), physical function and resting state EEG (rs-EEG)

Intervention: Active: 9 sessions (30 min.) of ISF-NF training, 3 sessions/week; Sham: listened to pre-recorded auditory files.


Data analysis: Pain & function: Descriptive statistics; rs-EEG: Exact low-resolution brain electromagnetic tomography (eLORETA)

Ethical approval: Health & Disability Ethics Committee (HDEC), New Zealand (19CEN182)

Contact: <u>jerin.mathew@otago.ac.nz</u>

INTERVENTION	
	SSC (18, 40, 68)
	dACC (0, 26, 22)
	Const
	pgACC (0, 36, 2) ISF-NE: ACC & SSC down-training
NF training setup	ISF-NF targeted regions and training direction

RESULTS Demographics and feasibility measures				
Variables		Active group (n = 11)	Sham group (n = 10)	
Age, years, M ± SD		61.4 ± 8.8	60.6 ± 5.3	
Sex, n (%) Fem	ales	7 (63.6%)	6 (60%)	
BMI, kg/m2, M ± SD		28.4 ± 5	32.1 ± 7	
Disease duration (yrs.), M ± SD		5.3±4	2.6±2.3	
Drop-out rate		0	1	
Adverse effects (safety)		None	None	
Treatment acceptability (7-point scale)		6.3±0.9	6.5±0.5	
Perceived level of effectiveness (7-point scale)		4.8±2.1	5.7±1.3	

up; WK1-WK3: Week 1 to 3

CONCLUSIONS

Feasibility of recruitment: 22 participants in 6-months duration

Red line: bidirectional increased FC and EC

The ISF-NF training is a feasible, safe, and acceptable intervention for pain management in people with KOA. ISF-NF can produce measurable activity and connectivity changes within the targeted cortical regions. The findings of this study warrants a fully powered clinical trial.

REFERENCES

1. Smith, M.L., et al., Infra-slow fluctuation training in clinical practice: A technical history.

NeuroRegulation, 2014. 1(2): p. 187-187.

- 2. Vanneste, S. Chronic pain as a brain imbalance between pain input and pain suppression. Brain Commun, 2021. 3(1): p. fcab014.
- 3. Mathew, J., et al., Protocol for a Pilot Randomized Sham-Controlled Clinical Trial Evaluating the Feasibility, Safety, and Acceptability of Infraslow Electroencephalography Neurofeedback Training on Experimental and Clinical Pain Outcomes in People with Chronic Painful Knee. NeuroRegulation, 2020. 7(1): p. 30-30.