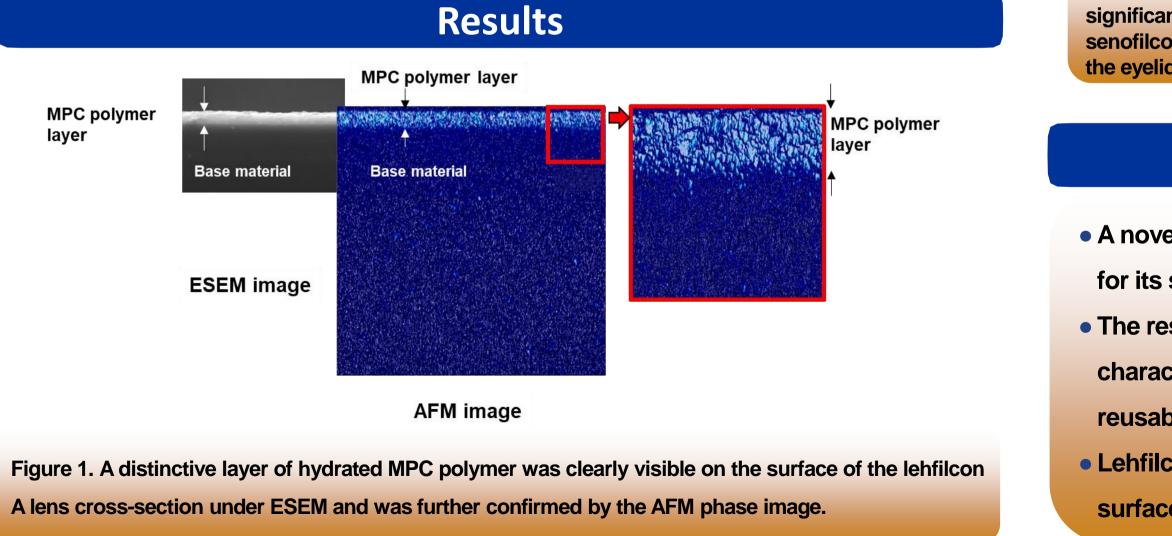
In Vitro Characterization of a Novel Reusable Silicone Hydrogel Contact Lens with **Surface Modification of MPC Polymer**

Charlie Shi, Vinay Sharma, George Yao, James Wu Alcon, Fort Worth, Texas, USA

0.3

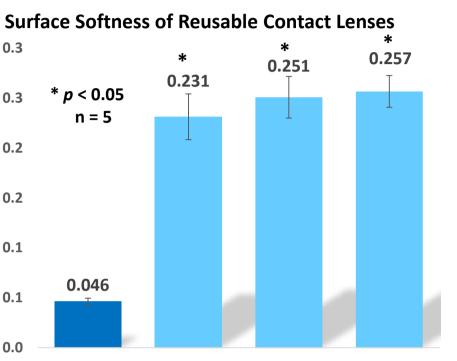
(MPa) Soft

0.1


0.0

Background

Lehfilcon A is a new silicone hydrogel (SiHy) material with surface modification of a crosslinkable bioinspired 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer to advance the properties and performance of reusable contact lenses. This study was conducted to characterize lehfilcon A in fully hydrated conditions for its unique surface structure and compare its in vitro properties to those of other traditional SiHy materials.


Methods

Environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM), and a combination of these two technologies were applied to image the detailed structures of MPC polymer surface layer on lehfilcon A lens. AFM nanoindentation and tribometer were utilized to compare the surface softness and lubricity of lehfilcon A, comfilcon A, senofilcon A, and senofilcon C contact lenses. All analyses were conducted in either 100% relative humidity or aqueous solutions to maintain lenses at hydrated state, mimicking on-eye conditions.

2022 Global Specialty Lens Symposium

Results (Continued)

Lehfilcon A Comfilcon A Senofilcon C Senofilcon A

Figure 2. The AFM nanoindentation testing showed that surface of lehfilcon A lens was significantly softer than that of comfilcon A, senofilcon A, and senofilcon C lenses under the eyelid contact pressure (p<0.05 for all).

Surface Lubricity of Reusable Contact Lenses o.7 0.7 0.6 0.53 * *p* < 0.05 0.6 n = 5 0.37 0.27 Most M 0.05

Lehfilcon A Senofilcon A Comfilcon A Senofilcon C

Figure 3. The coefficient of friction of the surface of lehfilcon A lens was also significantly lower than that of comfilcon A, senofilcon A, and senofilcon C lenses (p<0.05 for all).

Conclusions

- A novel MPC surface-modified SiHy contact lens, lehfilcon A was characterized
- for its surface structure and in vitro properties.
- The results indicate that lehfilcon A lens has the exceptional surface
- characteristics of ultra-softness and superior lubricity compared to other
- reusable SiHy lenses.
- Lehfilcon A lens may provide surface mechanical properties similar to ocular
- surface, and is expected to achieve outstanding on-eye performance.

The data was previously presented at ARVO 2021