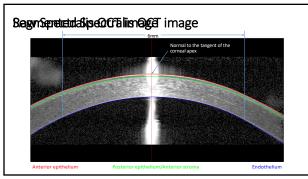


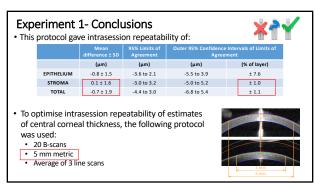



2

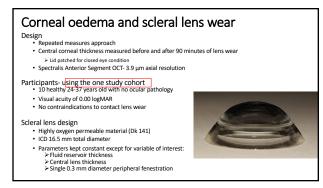
4

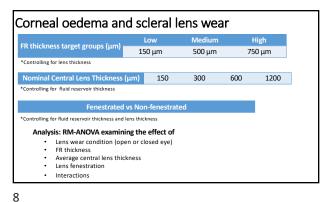



AS-OCT repeatability Aim

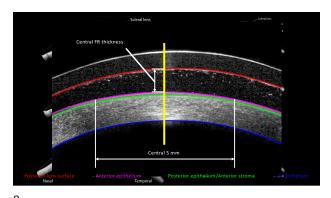

• To determine optimum number of B scans and volumetric proto Participant details 15 participants aged between 20 – 37 years
 Visual acuity of 0.00 logMAR or better
 No ocular pathology or contraindications to contact lens wear Methodology

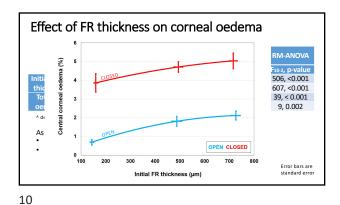
• Spectralis Anterior Segment OCT used to capture images (3.9 µm axial resolution)


• Custom written software used to manually segment OCT images Statistical Analysis Bland-Altman plots Comparing number of B scans (single line) and number of lines (volumetric) along with intraobserver and intrasession comparisons 95% limits of agreement with exact 95% confidence intervals<sup>1</sup>


3



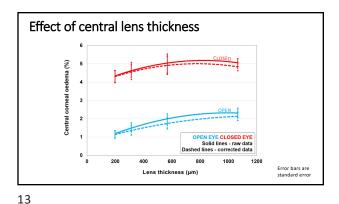




5 6





7






| Effect of FR thickness                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary  • Increasing FR thickness caused a small increase in corneal oedema for both open and closed eye conditions                                                                                                                                         |
| <ul> <li>Comparison to models</li> <li>◆ Open eye</li> <li>➤ Resistance in series modelling greatly over-estimated oedema for FR values &gt; 300 µm.</li> <li>➤ Oxygen metabolism model gave some agreement, but slightly under-estimated levels.</li> </ul> |
| <ul> <li>◆ Closed eye</li></ul>                                                                                                                                                                                                                              |

Effect of central lens thickness on oedema  $\frac{\text{Nominal Central Lens Thickness (}\mu\text{m})}{\text{(}\text{(Mean}\pm\text{SE)}\text{)}} \frac{\text{RM-ANOVA}}{\text{(}\text{(Mean}\pm\text{SE)}\text{)}}$  litids 150 300 600 1200 F(9.3), p-value Initial central FR Open 119  $\pm$  22 489  $\pm$  18 528  $\pm$  27 512  $\pm$  28 5.84, 0.004 thickness (}\mu\mathrm{m}\) closed 331  $\pm$  24 508  $\pm$  19 539  $\pm$  27 532  $\pm$  25 5.9, 0.004 Total corrected open 1.14  $\pm$  0.22 1.36  $\pm$  0.26 1.74  $\pm$  0.30 [2.13  $\pm$  0.22 3.54, 0.03 correction was applied where a 2nd order polynomial was fitted to central corneal oedema data as a function of FR thickness for each participant 
• This was used to estimate the difference in oedema due to the difference in FR thickness relative to the thinnest initial FR thickness

11 12



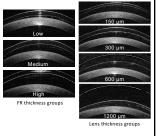
# Effect of central lens thickness Summary



- Increasing central lens thickness caused a small increase in corneal oedema for both open and closed eye conditions
- Difference from modelling may be due to increased tear mixing or exchange with decentration or lens movement due to a thicker lens
- Comparisons
  - Open eye
  - ➤ Showed similar levels of oedema with studies by Pullum<sup>1,2,3</sup> up to 600 μm thickness
  - > Resistance in series modelling overestimated oedema by ~53%
  - ➤ Coxygen metabolism modelling demonstrated reasonable agreement for Dk/t ~30 to 70

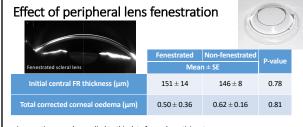
    Closed eye

    Rate of change deviates with Dk/t below ~30


14

# FR thickness vs Lens thickness relative s (%) 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 1000 Thickness (µm)

### FR thickness vs Lens thickness


#### Summary

- Increasing FR or central lens thickness resulted in slightly increased oedema
- Altering FR thickness has a larger effect on oedema possibly related to Dk of tears
- Oxygen metabolism modelling is consistent with open eye data but not with the rate of oedema increase shown in closed eye



15

16



- A correction was also applied to this data for each participant
- Peripheral lens fenestration caused no significant difference in oedema levels
- While the 0.12% difference is statistically insignificant, it is a 19% relative reduction in oedema that may still be of clinical benefit when fitting a compromised cornea

## Conclusions



- · Increased FR thickness and central lens thickness results in a small increase in corneal oedema with FR thickness having the larger effect
  - Oxygen metabolism modelling showed reasonable agreement with open eye data ◆The rate of increase in corneal oedema with increased FR thickness or central lens thickness is lower during closed eye conditions compared to theoretical modelling
- Perhaps the increased FR alters oxygen dynamics to convection transport rather than passive diffusion resulting in increased tear exchange
- · Increased lens thickness perhaps causes increased lens decentration or movement which could increase tear exchange
- · A small single lens fenestration had no significant effect on corneal oedema compared to a similarly fitted non-fenestrated scleral lens

# Clinical implications



- Limit scleral lenses to daily wear unless constant corneal protection >Gives a relative reduction in oedema from 54-82%
- Consider thinnest practical central FR and lens thickness to reduce oedema ≻Reducing FR thickness from 500-700 to 150 µm can give ~65% reduction ≻Reducing lens thickness from 300-1200 to 150 µm can give a 26-50% reduction
- The incorporation of a lens fenestration can achieve a further reduction >A potential 19% relative reduction
  - >An important consideration when fitting a compromised cornea