Moving Orthokeratology Forward in 2022

GSLS 2022 Workshop, Friday, January 21, 2022 8:00 AM to 9:50 AM

Course Instructors: Patrick Caroline and Randy Kojima Pacific
University College of Optometry

Course Outline

Introduction

What are our techniques when it comes to orthokeratology? Why do we use them? Can we improve upon lens construction or method?

Creating an epithelial response

Construction of an orthokeratology lens

Diameter selection: VID - 0.8mm

Base curve: Jessen formula of 0.50D flatter than Kf

Modified Jessen formula of 1.75D flatter than Kf

Reverse curve: creating ~7 microns of apical clearance

Alignment zone: creating a sealed landing

Edge lift: Appropriate edge lift to create a healthy fit, comfort and response.

Tissue response

Negative suction forces on the epithelium drive orthokeratology effect

Treatment zone size assessment – axial map and determining the point of zero effect.

Plus power assessment – using the graph to evaluate the myopia control signal (plus power signal)

Low versus high myopic treatment and the resultant myopia control signal

Alignment zone and centration

Lens to surface relationship – construction options

Radius: curve to aspheric surface

Tangent: angle zone on aspheric surface

Aspheric: Changing radius on aspheric surface

Flat versus steep axis

Radius of the central cornea: range of corneal cyl acceptable

Sagittal differential at 8mm – flat versus steep sag

Threshold of fitting a toric lens – 30 microns

Case example of symmetric versus toric landing

Toric lens studies in orthokeratology

List of previous findings with toric landing lenses

Pacific et al, 2015

Tan et al, 2019

Guo et al, 2021

Fluorescein assessment

Optimal pattern of an orthok lens

Determining apical clearance

Case example of various sags on eye

Decentration with apical bearing present

Case example: Ideal NaFI pattern and topographical outcome
Case example: Poor pattern with an ideal topographical outcome
Observations of an ideal pattern: open eye centration, 360
degree alignment, 0.5mm width of edge lift.

Post wear response

Tangential analysis: the commonly used assessment but what do we miss?

Post wear map: axial or tangential doesn't give us the full story Subtractive/difference/comparison map

Axial: Rx change using the comparison of apical radius

Treatment zone position – position of blue area of flattening

Treatment zone size – diameter of the blue area of flattening

Myopia controlling effect – measuring apical versus power at the pupil margin

Tangential: lens position

Determine the position of the red ring (epithelial steepening) in relationship to the pupil

Determine the position of the blue ring (alignment zone flattening) in relationship to the pupil

Visual response: what should be the target effect?

AM refraction: Plano to +1.00 with a target of +0.50D Improving myopia control response

Treatment zone size and its relationship to spherical aberration Spherical aberration studies

Lau et al: SA and myopia control

Optical zone manipulation

5.0 vs. 6.0 study – Carracedo et al: small optical zone, smaller treatment zone

5.0 vs. 6.0 study – Guo et al: less axial growth with the smaller treatment zone

5.0 vs. 5.5 vs. 6.0 study – Carracedo et al.: similar spherical aberration findings with 5.0 and 5.5mm

Reservoir Depth manipulation

Reservoir depth of a -1.00D treatment – case example

Reservoir depth of a -4.00D treatment – case example

Hong Kong poly study: modified Jessen factor to increase reservoir depth

Asphericity in the optical zone of the lens

Altering optical zone alone results in lower reservoir depths and must be coupled with asphericity

Chow study: high asphericity in orthokeratology – 5 year findings

Guo study: high asphericity in orthokeratology – 1 year findings

Decentration in orthokeratology

Do we really want to center orthokeratology perfectly? Example of an ideal bulls-eye response

Angle alpha and the lack of centration possible in most eyes – typical temporal decentered treatment

Hiraoka et al: Higher coma produces better myopia control (higher decentration)

Wang & Yang: Decentration produces better myopia control

Conclusions

Fluorescein patterns should not dominate the decision making in orthokeratology fitting

Create a toric landing for all patients with 30 microns or more of sagittal differential at 8mm

Smaller treatment zones should be used for better myopia control

Asphericity should be coupled with smaller treatment zone to increase the reservoir depth and suction force