

Process and Outcomes of Fitting Corneoscleral Profilometry-Driven Scleral Lenses for Patients with Ocular Surface Disease

Hannah Yoon¹, Jennifer Harthan², William Skoog², Amy Nau³, Jennifer S Fogt⁴, Cherie Nau⁵, Muriel Schornack⁵, Ellen Shorter¹

¹Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL; ²llinois College of Optometry, Chicago, IL; ³Korb and Associates, Boston, MA; ⁴The Ohio State University, Columbus, OH; ⁵Mayo Clinic, Department of Ophthalmology, Rochester, MN

INTRODUCTION

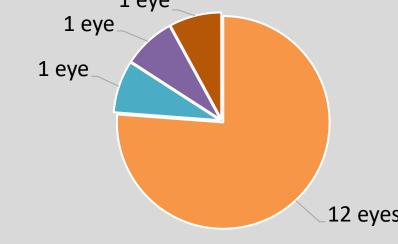
Integrating custom technology with lens fabrication has been proposed to reduce chair time by eliminating the trial-and-error involved in the traditional approach to diagnostic scleral lens (SL) fitting¹.

Purpose: Assess the feasibility of obtaining corneoscleral profilometry measurements using the Cornea Scleral Profile (CSP) module on the Oculus Pentacam and report on the lens design and fitting process of image-guided, custom SLs.

METHODS

Study Design

- IRB approved, prospective study
- Consecutive patients being fit with SLs at the Illinois Eye and Ear Infirmary were identified as potential participants


Data Collected

- Indication for lens use
- CSP scan acquisition process, ie. scan duration, # of clinicians required for imaging, number of scans taken
- Topographical information from the **CSP** report Scleral lens fitting process, ie. number of office visits required, number of lenses ordered, reason for lens remake

Statistical analysis

Descriptive statistics reported

Ocular surface disease was th indication for SL wear for all patie 1 eye

- Keratoconjunctivitis sicca (6 patients, 12
- Neurotrophic keratitis (1 patient, 1 eye)
- Limbal stem cell deficiency (1 patient, 1 e
- Neuropathic pain (1 patient, 1 eye)

1. Scan Acquisition

- 9 patients (15 eyes) were scanned
- A single clinician alone was able acquire scans
- Mean total scan time per eye:
 - OD: 10.7 ± 6.5 minutes (range 19)
 - OS: 9.7 ± 4.7 minutes (range 3 15)
- All eyes required manual lid retraction to obtain adequate supe and inferior scans
- Most common imaging errors: lid closure/blinking and unsteady fixa

Topographica			
Mean Corneal Astigmatism (in diopters)			
Mean Horizontal Visible Iris Diameter (in mm)			
Mean Scan Coverage Area (in mm)			
Mean Scleral Toricity at 3 Chord Lengths (in um)	15mm		
	136.71 ± 132.96		

 11.6 ± 0.4

 17.30 ± 0.26

16mm

208.64 ± 157.92 308.86 ± 175.40

17mm

RESULTS

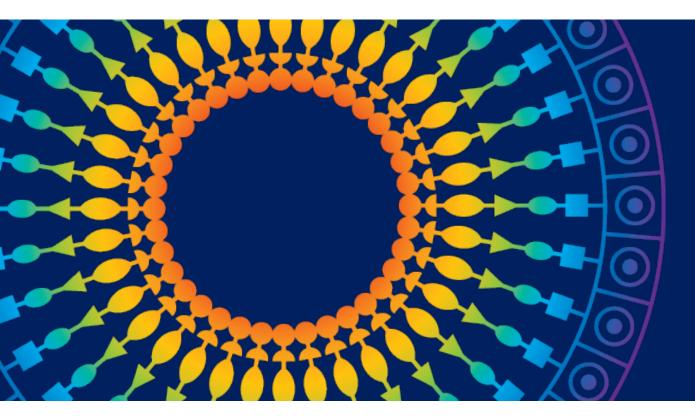
	NLJULIJ				
he ients	OCULUS - PENTACAM CSP Jane Scale Prote (5 scale) 1 000 - 126 2 200 - 111 4 200 - 111 5 200 - 200 7 262 - 82 8 265 - 75 9 248 - 66 10 100 - 126 12 256 - 46 13 217 - 137 14 247 - 104 15 247 - 66 16 197 - 177 16 197 - 177 16 197 - 177 16 197 - 177 16 197 - 177 17 169 - 98 18 197 - 107 19 107 - 304 10 197 - 304 11 197 - 304 12 197 - 304 13 197 - 304 15 197 - 304 16 197 - 104 17 198 - 304 18 197 - 304 198 - 304 198 - 304 198 - 304 198 - 304 198 - 304 198 - 304 <th>Report</th> <th>Pendetacean Ces Scieral Parameters Ing Dia 12615 et aler 37° @80° Img Dia 17.0 mm et aler 37° @80° Img Dia 17.0 mm Img Dia et aler 37° @80° Img Dia 17.0 mm Img Dia 17.0 mm et aler 37° @80° Img Dia Img Dia 17.0 mm Img Dia 12.3 mm Img Dia Img Dia</th> <th>SP report Printout showing (A) scans in 25 directions, (B) elevation map of the corneoscleral elevation, (C) scan coverage map for the data collected, (D) minimum and maximum sagittal heights for a (E) specific chord lengths (can be adjusted).</th>	Report	Pendetacean Ces Scieral Parameters Ing Dia 12615 et aler 37° @80° Img Dia 17.0 mm et aler 37° @80° Img Dia 17.0 mm Img Dia et aler 37° @80° Img Dia 17.0 mm Img Dia 17.0 mm et aler 37° @80° Img Dia Img Dia 17.0 mm Img Dia 12.3 mm Img Dia Img Dia	SP report Printout showing (A) scans in 25 directions, (B) elevation map of the corneoscleral elevation, (C) scan coverage map for the data collected, (D) minimum and maximum sagittal heights for a (E) specific chord lengths (can be adjusted).	
	2. Lens Order	ring		3. Lens Fitting	
ed to 4 to 3 to berior ation	 A diagnostic BostonSight SL was placed on the eye for over- refraction following imaging SL diameter selected based on practitioner experience, taking into account the data coverage map (Figure 1, C) BostonSight Smart360 image- guided SLs were ordered for 9 patients (14 eyes) For 1 eye of 1 patient, lens could not be ordered due to insufficient data 		 Fitting completed for 8 patients (13 eyes) 1 patient (1 eye) was unable to tolerate scleral lens wear and fitting not completed Initial lens ordered for 7 eyes provided adequate central corneal fluid reservoir, limbal clearance, scleral landing zone alignment, and visual acuity Reasons for deferring initial lens dispense for the remaining 6 eyes included: poor scleral landing zone (5/6 eyes) excessive central corneal fluid reservoir (4/6 eyes) poor visual acuity requiring refractive power change (2/6 eyes) 		
al Data	al Data			Fitting Data	
0.98 ± 0.88		Mean SL Diameter (in mm) 17.75			

Mean # of Lenses Ordered

Mean # of Visits

Mean Fitting Duration (in days)

OS

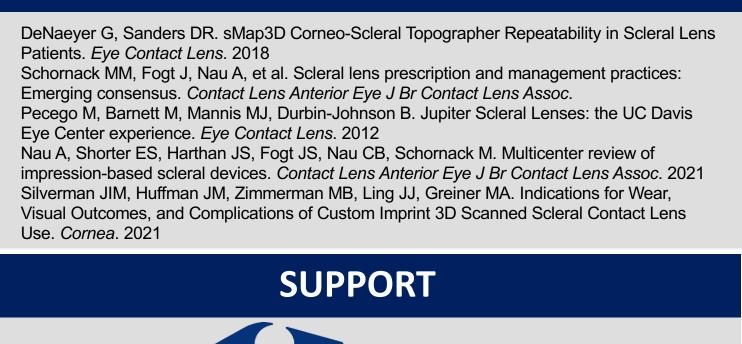

2.11 ± 1.17

2.88 ± 1.31

71.44 ± 37.51

OD

2.14 ± 1.21


DISCUSSION

- Despite using CSP data to design an initial imageguided SL, the # of lenses ordered, # of visits, and fitting duration to reach fit completion were consistent with current data^{2,3} on the traditional, diagnostic approach to SL fitting.
- Existing customizations (ie. toric or quadrantspecific landing zones), available in standard lenses may be adequate to fit most eyes without using advanced imaging technology
- Eyes with highly irregular scleras secondary to conjunctival topographical abnormalities that cannot achieve success with standard scleral lenses may benefit from image-guided or impression-based SL designs^{4,5}

CONCLUSION

In this series, there were no appreciable differences in efficiency of CSP-guided lens fitting and diagnostic SL fitting. However, comparisons between the two when fitting very complex ocular surface topographies may reveal greater differences in efficiency.

REFERENCES

Research to Prevent Blindness