

Optometry and Vision Science

GSLS 2023

Introduction

- Incompatibility of contact lenses with care solutions may lead to unacceptable changes to physical parameters.¹
- ISO 11981:2017 details the criteria for assessing compatibility of contact lens care products with contact lenses.¹
- The standard specifies acceptable changes to parameters such as base curve, back vertex power (BVP), physical appearance and spectral transmittance when contact lens care products are used.¹
- Parameters which irreversibly change beyond specified tolerances would suggest an unacceptable combination of contact lens and care solution, but little published work has been detailed in the literature of this type of compatibility testing.¹
- Contact lens care products are also expected to recondition lenses after use, including the removal of protein.²
- There have been relatively few studies quantifying protein deposition on rigid gas permeable (RGP) lenses, potentially due to the relatively low amount of deposition and the sensitivity of common techniques.³
- Tear film proteins such as lysozyme can be radiolabeled to quantify their deposition on rigid lenses when examined in vitro.⁴

Purpose

To investigate the impact of several RGP care solutions on lens parameters of various RGP lens materials according to criteria in the ISO 11981:2017 standard, and the ability of a hydrogen peroxide-based RGP care solution to remove radiolabeled proteins from RGP lens materials.

Methods

- The ISO standard was followed for measuring lens curvature, BVP, spectral transmittance and examination of physical appearance, after equilibrating for 16 hours in phosphate buffered saline (PBS).¹
- Lenses and solutions tested for compatibility are found in Tables 1 and 2.
- Lenses then underwent 31 cycles of 16 hours of soaking in PBS followed by 8 hours of soaking in one of four RGP solutions.
- The parameters were then remeasured and compared to the specified ISO tolerances in Table 3¹ to determine if they passed or failed the criteria for compatibility.
- Cleaning efficacy of the solution containing 3% hydrogen peroxide, 0.00025% Poloxamer, phosphonic acid and phosphates in removing proteins was also evaluated. Thirty alternating cycles were performed of lenses soaking in an artificial tear solution containing radioactive lysozyme for 16 hours followed by 8 hours exposure to the care solution before quantifying lysozyme on the lenses using a radioactive method. Lenses examined are detailed in Table 4.

UNIVERSITY OF WATERLOO FACULTY OF SCIENCE School of Optometry & Vision Science

The impact of RGP care solutions on ISO measured lens parameters and the protein deposition on RGP lenses when managed with a hydrogen peroxide care solution

Methods (continued)

Contact Lens	Paragon CRT [®] HDS	Paragon CRT [®] 100	Menicon Z [®] Thin	Boston [®] XO	РММА
Manufacturer	CooperVision Speciality EyeCare	CooperVision Speciality EyeCare	Menicon	Bausch & Lomb	New Phase Optics
USAN	paflufocon B	paflufocon D	tisilfocon A	hexafocon A	PMMA

Table 1: Lenses examined for compatibility with solutions.

Contact Lens Care Products				
Product Description	Ingredients			
3% one step hydrogen peroxide solution	3% hydrogen peroxide, 0.00025% Poloxamer, phosphonic acid, phosphates			
3% hydrogen peroxide solution with neutralizing tablet	3% hydrogen peroxide, phosphates			
RGP cleaning and conditioning solution containing chlorhexidine	Chlorhexidine Digluconate, Disodium Edetate, Polyaminopropylbiguanide, Polyethylene Glycol, Polyvinyl Alcohol			
RGP cleaning and conditioning solution containing polyhexanide	0.0001% Polyhexanide, EDTA, sodium phosphates, poloxamer, sodium chloride			

Table 2: Solutions examined for compatibility with lenses.

Physical Parameter	Toler	Relevant Method	
Property	PMMA Gas Permeable		ISO 18369-3:2017 Section
Curvature	±0.025 mm	±0.05 mm	4.2
Back Vertex Power (≤ 5D)	±0.12 D		4.3
Physical Appearance	None that would interfere with intended functional use		4.6, 4.7
Spectral Transmittance and Colour	±5 % absolute between 380-780 nm Class 1 absorber <1.0% between 280-315 nm <10.0% between 315-380 nm Class 2 absorber 5.0% between 280-315 nm <50.0% between 315-380 nm		4.8

Table 3: Acceptable range of parameter changes for rigid contact lenses after use of solutions as defined by ISO 11981:2017.

Proprietary Name	Optimum Extreme	Paragon CRT [®] HDS	Paraperm [®] O ₂	Paragon CRT [®] 100	Boston [®] Equalens II	Boston [®] XO	Boston [®] XO₂
Manufacturer	Contamac	CooperVision Speciality EyeCare	CooperVision Speciality Eyecare	CooperVision Speciality EyeCare	Bausch & Lomb	Bausch & Lomb	Bausch & Lomb
USAN	roflufocon E	paflufocon B	pasifocon A	paflufocon D	oprifocon A	hexafocon A	hexafocon B

Table 4: Lenses assessed for protein removal by a representative 3% one step hydrogen peroxide solution

Results

Contact Lens		Paragon CRT [®] HDS	Paragon CRT [®] 100	Menicon Z [®] Thin	Boston [®] XO	РММА		
Mate	rial	paflufocon B	paflufocon D	tisilfocon A	hexafocon A	PMMA		
	Tolerance limits	Difference in CL Measurements after Cycling in						
Property	(ISO 18369- 2:2017)	3% One Step Peroxide Solution						
Number of RGPs started		12	12	15	12	18		
Number of RGPs completed		12	12	11	12	12		
Curvature	RGP ± 0.05 mm PMMA ±0.025 mm	-0.01 ± 0.02 (-0.03, 0.02) 12/0	-0.01 ± 0.01 (-0.02, 0.00) 12/0	0.01 ± 0.02 (-0.03, 0.03) 11/0	0.00 ± 0.01 (-0.01, 0.02) 12/0	0.003 ± 0.013 (-0.016, - 0.020) 12/0		
Back vertex power	±0.12 D	-0.01 ± 0.01 (-0.02, 0.00) 12/0	0.02 ± 0.00 (0.01, 0.02) 12/0	0.00 ± 0.01 (-0.01, 0.02) 12/0	0.00 ± 0.01 (-0.01, 0.02) 12/0	0.00 ± 0.01 (-0.01, 0.01) 12/0		
Physical appearance (e.g. surface defects, colour)	Comparison of physical descriptors	12/0	12/0	11/0	12/0	12/0		
	280-315 nm ±5.0% (Class 2)	N/A	N/A	-0.1 ± 0.1 (-0.4, 0.2) 11/0	N/A	N/A		
Spectral transmittance	315-380 nm ±50.0% (Class 2)	N/A	N/A	0.0 ± 0.1 (-0.3, 0.3) 11/0	N/A	N/A		
	380-780 nm ±5 %	1 ± 1 (0, 3) 12/0	0 ± 0 (-1, 1) 12/0	0 ± 1 (-2, 1) 11/0	0 ± 0 (0, 1) 12/0	0 ± 0 (-1, 1) 12/0		
Colour	∆e<0.077	0.000 ± 0.000 (0.000, 0.001) 12/0	0.000 ± 0.000 (0.000, 0.001) 12/0	0.000 ± 0.000 (0.000, 0.000) 11/0	0.000 ± 0.000 (0.000, 0.000) 12/0	0.000 ± 0.000 (0.000, 0.000) 12/0		

© 2023 CORE – Centre for Ocular Research & Education, University of Waterloo, UNSW Sydney and CooperVision. Unauthorized utilization, editing, reproduction of Waterloo, UNSW Sydney and CooperVision. All data and images were collected, compiled and are exclusively owned, by CORE, UNSW Sydney and CooperVision.

Alex Hui^{1,2}, Miriam Heynen¹, Vivian Chan¹, Parisa Mirzapour¹, Daryl Enstone¹, Manar Saad¹, Melanie George³, William Ngo⁴, Lyndon Jones^{1,4} ¹Centre for Ocular Research & Education, University of Waterloo, Canada ²School of Optometry and Vision Science, UNSW Sydney, Australia ³Coopervision, Pleasanton, USA, ⁴School of Optometry & Vision Science, University of Waterloo, Canada

Table 5: Representative ISO compatibility data of examined lenses with a 3% one step hydrogen peroxide solution. All measurements were within tolerances specified after use and was similar to results seen with other solutions. No unacceptable change in parameters were observed. Data presented as mean difference ± SD, (min, max), number of CLs that passed / number of CLs that failed.

Results (continued)

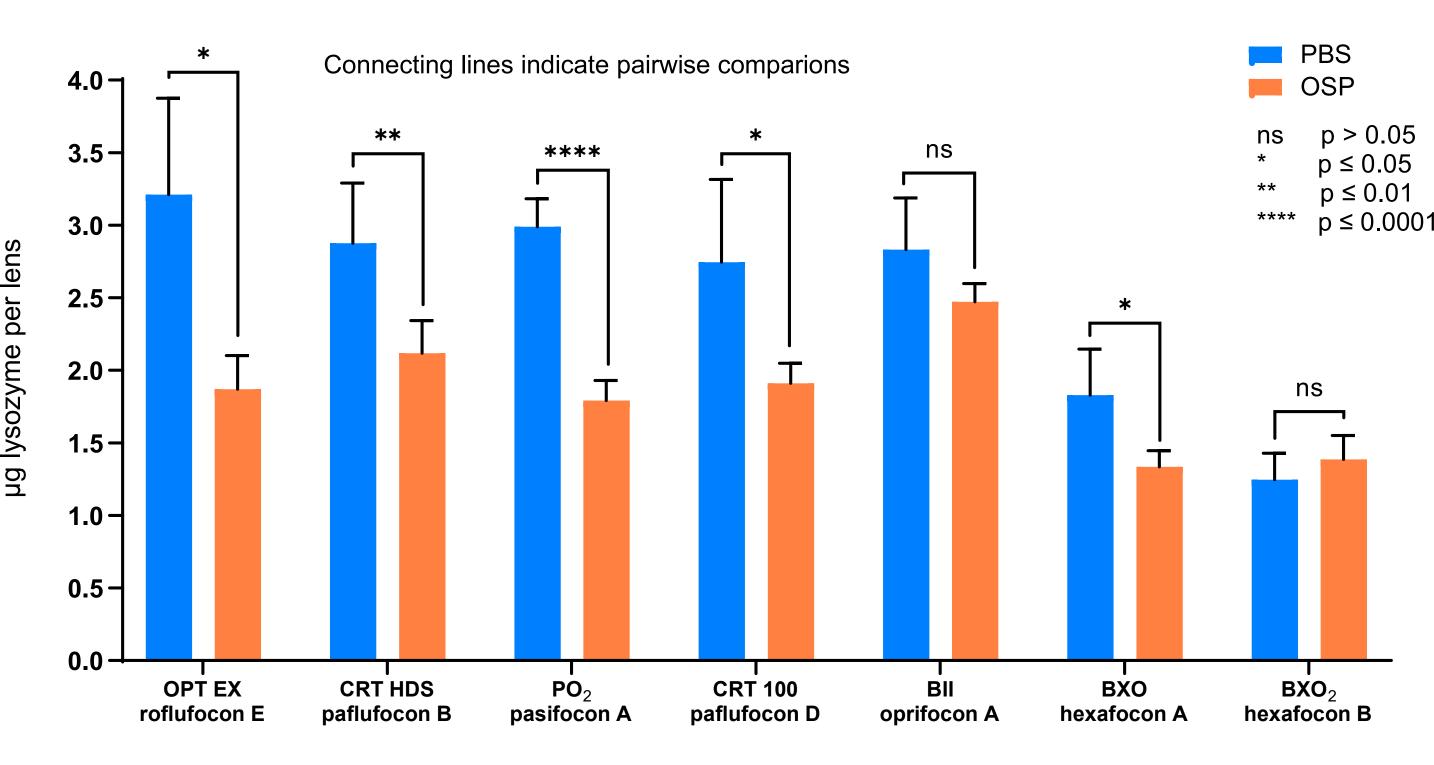


Figure 1: Radioactive lysozyme deposits from various RGP lenses when a representative 3% one step hydrogen peroxide (OSP,) solution is used compared to PBS over 30 alternating incubation/cleaning cycles.

Discussion and Conclusions

- physical changes occurred.

References

- S8.
- contact lenses. CLAO J 1997;23:177-84.

RGP Contact Lens Type

All tested lens and solution combinations were deemed compatible with each other, with any changes in lens curvature, BVP, spectral transmittance and physical appearance within ISO specified tolerances, suggesting no significant

• The amount of lysozyme deposited on RGPs was comparatively small.

• A 3% one step hydrogen peroxide based solution was successful in significantly reducing the amount of radioactive lysozyme present on the majority of RGPs after being used for 30 alternating incubating and cleaning cycles, suggesting that it can be effective in removing protein deposits.

1. International Organization for Standardization. ISO 11981:2017 Ophthalmic optics — Contact lenses and contact lens care products — Determination of physical compatibility of contact lens care products with contact lenses. In: International Organization for Standardization; 2017.

2. Szczotka-Flynn L, Ahearn DG, Barr J, Benjamin WJ, Kiang T, Nichols JJ, Schein OD, Stone RP, Winterton L. 1. History, evolution, and evolving standards of contact lens care. Cont Lens Anterior Eye 2013;36:S4-

3. Tan A, Milthorpe BK, Huff JW. A technique for quantitation of protein deposits on rigid gas permeable

4. Ceska M, Sjodin AV, Grossmuller F. Some quantitative aspects of the labelling of proteins with 125 I by the iodine monochloride method. Biochem J 1971;121:139-43.

Acknowledgements

This study was supported by CooperVision