

#### Novel Natural Gas Monetization Method for Simultaneous Production of Electricity, Fertilizer, and Salicylic Acid with Inherent CO<sub>2</sub> Sequestration and Utilization

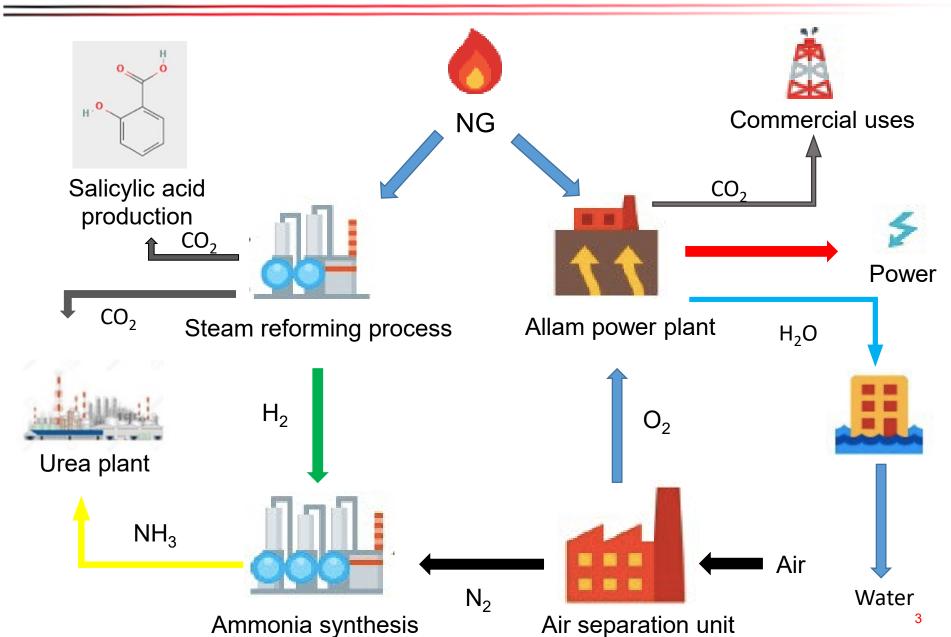
#### Qiang Xu

#### Dan F. Smith Department of Chemical & Biomolecular Engineering

Lamar University, Beaumont, TX 77710, USA

NSF Workshop on Advanced Manufacturing for Industrial Decarbonization Arlington, West Virginia

August 3 - 4, 2023

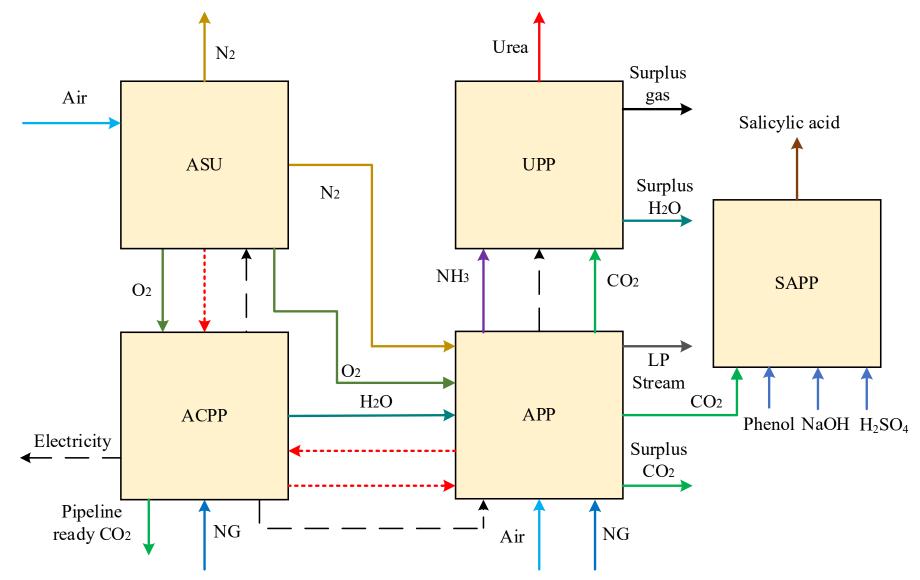



- Challenges of global warming
  - $\rightarrow$  emission reduction  $\rightarrow$  industrial emission reduction
- Challenges of world population growth
  - $\rightarrow$  food supply increase  $\rightarrow$  fertilizer production increase
  - → electricity supply increase
- How to face the above challenges from chemical industry perspective?

System integration + Using technologies effectively



## **A3US Complex Motivation**






- A conceptual design of an industrial complex integrating Allam power cycle, air-separation unit, ammonia, urea, and salicylic acid productions (A3US)
- Zero NOx emission and less CO<sub>2</sub> emission;
- Feedstock: Natural gas, air + phenol, NaOH, H<sub>2</sub>SO<sub>4</sub>
- Multiple products with the high profitability potential
- Great potential for extensive integration with other plants (e.g., LNG)
- Comprehensive analysis to demonstrates its economic and environmental benefits



### **A3US Complex Overview**



# **Production Analysis and Comparison**

| Productions per NG<br>Consumption       | Stand-alone Plant                                     | Integrated A3US<br>Complex |
|-----------------------------------------|-------------------------------------------------------|----------------------------|
| Net Electricity (kWh/Mcf)               | 130                                                   | 120.87                     |
| Urea (kg/Mcf)                           | 30.30                                                 | 18.00                      |
| Pipeline-ready CO <sub>2</sub> (kg/Mcf) |                                                       | 39.66                      |
| LP Steam (kg/Mcf)                       |                                                       | 32.45                      |
| N <sub>2</sub> Product (kg/Mcf)         |                                                       | 284.46                     |
| Salicylic Acid (kg/Mcf)                 |                                                       | 1.05                       |
| Product Revenue (\$/Mcf)                | \$16.76 for gas power plant<br>\$20.91 for urea plant | \$66.24                    |



## **Emission Analysis and Comparison**

| Emissions per Urea<br>Product    | Standalone Ammonia<br>Plant                       | Integrated A3US<br>Complex |
|----------------------------------|---------------------------------------------------|----------------------------|
| CO <sub>2</sub> (kg/kg)          | 0.92                                              | 0.146                      |
| NO <sub>x</sub> (kg/kg)          | 2.43E-05                                          | 0                          |
| Emissions per Net<br>Electricity | Typical Gas Power Plant<br>without Carbon Capture | Integrated A3S<br>Complex  |
| CO <sub>2</sub> (kg/kwh)         | 0.41                                              | 0.0217                     |
| NO <sub>x</sub> (kg/kwh)         | 7.98E-06                                          | 0                          |



- Developed a conceptual industrial complex integrating Allam power cycle, ASU, ammonia, urea, and salicylic acid plants (A3US)
- Performed modeling and simulation to demonstrate the efficacy of the development
- Conducted comprehensive analysis to demonstrates its economic and emission reduction benefits
- Proposed a promising way for natural gas monetization, which simultaneously produce power, urea, and salicylic acid with high efficiency, free NOx emission, as well as inherently capture and produce pipeline-ready CO<sub>2</sub> for commercial utilization