Additive Manufacturing of Functionally-Graded Refractory Metal-Ceramic Structures using the Electron Beam Sintering (EBS) Process

Dr. Cheryl Xu

Professor

Department of Mechanical and Aerospace Engineering North Carolina State University

cheryl.xu@ncsu.edu

NC STATE Mechanical and Aerospace Engineering

Motivation

- Enabling the efficiency of gas turbines, which introduces significant reductions in wasted energy and carbon emissions
 - power generation
 - aviation industries
- Developing novel ultrahigh-temperature materials in combination with compatible coatings
 - Be able to operate continuously in extreme environments, enabling gas turbine inlet temperatures of 1800 °C or higher
 - Complex geometries that can be seamlessly integrated into the system design

Functionally-gradient turbine blade structure

State-of-the-Art

- The efficiency of a gas turbine depends to a large degree on the peak temperature of the working fluid (e.g., air or combustion products). The higher the peak temperature, the higher the efficiency and specific core power.
 - Current state-of-the-art alloys used in turbines can not operate at temperatures higher than 1100 °C.
 - In practice, turbine blades are coated with thermal barrier coatings (TBC), which allow the surface temperature of a coated blade to be significantly higher - up to 1500 °C.

The specific core power of an aircraft engine as a function of temperature

Market Impacts

completely burn out of nozzle guide vane

corrosion and melting

- A 7% improvement in efficiency in the natural gas turbines used for electricity generation in the U.S. represents a saving of up to 15-16 quads of energy by 2050.
- A similar improvement in the turbines used for civilian aircraft represents another 3-4 quads of potential savings for U.S. air travel over the same time span.

A quad is a unit of energy equal to 10^{15} (a quadrillion) BTU, or 1.055×10^{18} joules in SI units.

Ultra-High Temperature Ceramics (UHTCs)

- UHTCs are materials suitable for extreme environments that are generally used in next-generation aviation vehicles with sharp leading edges and nose cones, thermal protection systems of atmospheric re-entry vehicles, etc.
- Borides, Nitrides, Carbides of early transition metals such as Zr, Hf, Nb, Ta, etc.
- Properties of UHTCs:
 - High Melting Points (>3000 °C)
 - Oxidation resistance at high temperatures
 - High Strength
 - High thermal conductivity
 - Good thermal shock resistance

W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Y. Zhou, Ultra-high Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, 2014.

NC STATE Mechanical and Aerospace Engineering

Electron Beam Sintering (EBS)

- EBS uses a concentrated electron beam as an energy source to rapidly heat, melt, and consolidate powder particles to produce shapes directly from 3D CAD model.
- Process Schematic:
 - Apply a powder layer
 - Preheat powder to enable a light necking
 - Melt powder bed according to 2D layer geometry
 - Lower the Bed to apply a new layer of powder
- The use of an electron beam has advantages:
 - High energy density
 - Vacuum enabling the processing of reactive materials
 - Low thermal stresses thanks to elevated temperatures achieved by preheating

NC STATE UNIVERSITY Mechanical and Aerospace Engineering

Torch Tests

• Samples that were able to survive 5-minute torch tests

Broader Impacts

- Gas turbine applications in power generation and aviation industries
- Marine engines and components
- High-temperature industrial applications
- Nuclear applications

Typical ascent leading-edge heat flux for an SSTO vehicle (Glass, D., 2008, AIAA)

Thank you for your attention!

Dr. Cheryl Xu Professor Department of Mechanical & Aerospace Eng. North Carolina State University Email: <u>cheryl.xu@ncsu.edu</u> Phone: 407-227-1372

