BINGHAMTON | THOMAS J. WATSON COLLEGE OF UNIVERSITY | ENGINEERING AND APPLIED SCIENCE

Continuous Casting of High-Temperature Micro-encapsulated Phase Change Materials for Industrial Decarbonization

Jingzhou (Frank) Zhao

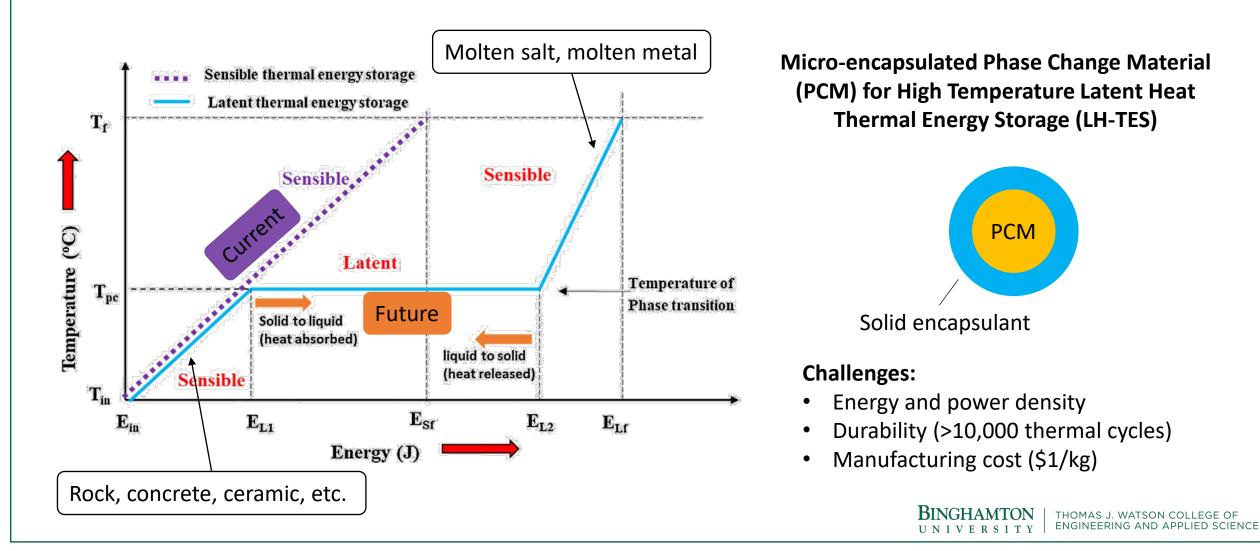
Department of Mechanical Engineering Binghamton University September 6, 2023

TES for Industrial Decarbonization/Electrification

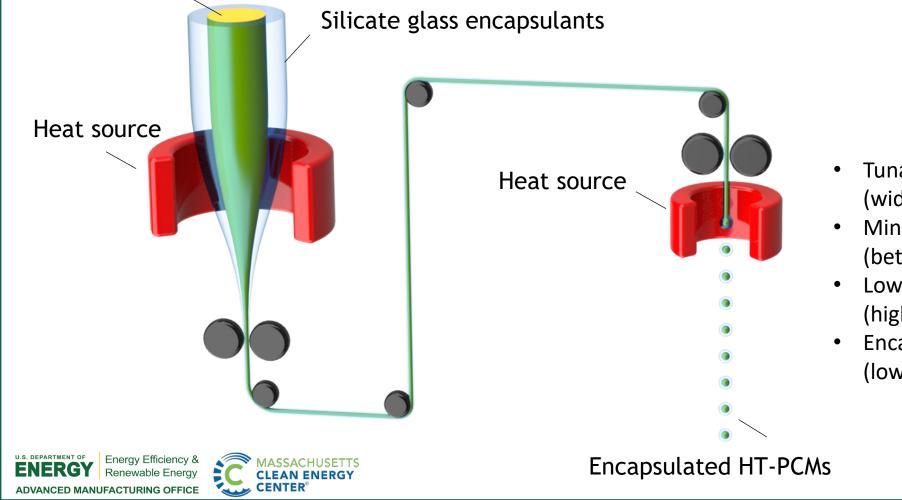
Thermal Energy Storage (TES) is the key enabler for dispatchability

Waste Heat Recovery

Solar Heat for Industrial Processes


Solar Heat for Power Generation

THOMAS J. WATSON COLLEGE OF ENGINEERING AND APPLIED SCIENCE


AM for Industrial Decarbonization

Micro-encapsulated PCM for HT-LHTES (>300 °C)

Continuous Casting of Micro-encapsulated Phase Change Materials

High Temperature-Phase Change Materials (HT-PCMs)

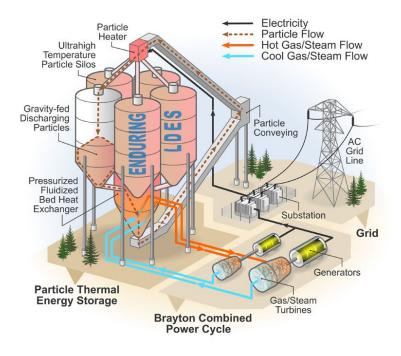
- Tunable melting point (wide applications)
- Minimal thermal expansion mismatch (better durability)

THOMAS J. WATSON COLLEGE OF ENGINEERING AND APPLIED SCIENCE

- Low undercooling (higher efficiency)
- Encapsulation while production (lower cost)

Development Goals

Objective/ Goal	Metric	Minimum	Stretch Target	Baseline Performance/Cost
Improved range of melting point	°C	230 °C ~ 1200 °C	230 °C ~ 1500 °C	232 °C
Increased energy density of storage component by weight	J/g	800	1400	60
Increased energy density of storage component by volume	J/cm ³	1700 (Cu)	2700 (Si)	439 (Sn)
Increased lifetime of storage component	# of charge-discharge cycles	8000	10000	3000
Increased throughput (Reduced cost of production)	g/hr	100	1000	0.01
Reduced undercooling (Improved reversibility)	% of absolute melting temperature	10%	5%	20%
Improved thermal conductivity (Improved charge-discharge rate)	W/m-K	100	200	33


Volumetric energy density of Liion Battery by 2020: **1620** J/cm³

Muralidharan, Nitin, et al., *Transition Metal Oxides* for *Electrochemical Energy Storage* (2022): 33-53.

Scientific and Social Impact

- Capillary break-up of coaxial fluid interfaces in the presence of a steep temperature gradient
- Key enabler for the future success of TES systems
- Drop-in replacements for particle-based TES systems
- New miniaturized HT-TES systems for industrial electrification
 - Comparable or higher volumetric energy density than LIB
 - Reduced capital investments
 - Accelerated adoption

DOE ENDURING Project @ 900 °C

THOMAS J. WATSON COLLEGE OF ENGINEERING AND APPLIED SCIENCE

Acknowledgements

7