

Deep Decarbonization of Industry Through Electrification of Process Heating

Presenter: Cecilia Springer, PhD

Principal - Global Efficiency Intelligence

Co-Authors:

Ali Hasanbeigi, Global Efficiency Intelligence


Lynn A. Kirshbaum and Blaine Collison - David Gardiner and Associates

August 3, 2023

Team

- Global Efficiency Intelligence
- David Gardiner and Associates

Ali Hasanbeigi, Ph.D. — Global Efficiency Intelligence Lynn A. Kirshbaum, Blaine Collison, and David Gardiner — David Gardiner & Associates

January 2021

All Hasanbeigi, Ph.D. - Global Efficiency Intelligence Lynn A. Kirshbaum and Blaine Collison - David Gardiner and Associates

U.S. Manufacturing Energy Use by End Uses in 2018 (Trillion Btu)

		Conventional Boiler Use, 1904	Machine Drive, 1762	
	CHP and/or	Direct Uses-Total	Other Process Use, 331	Process Cooling, 250
Process Heating, 5164	Cogeneration Process, 3828	Nonprocess, 1077	Electro- Chemical Processes, 234	End Use Not Reported, 209

Source: US DOE 2019- manufacturing energy footprints

Industrial Heat Demand Profile

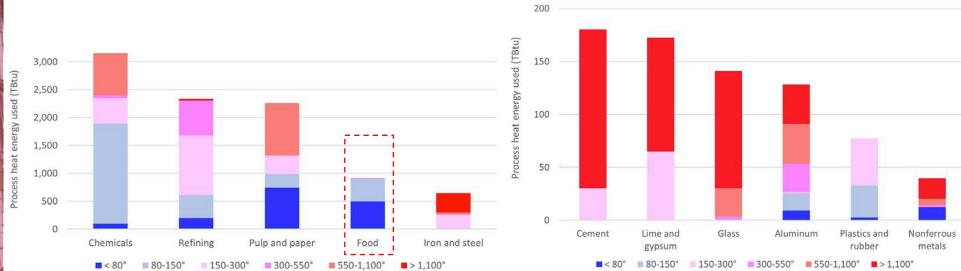
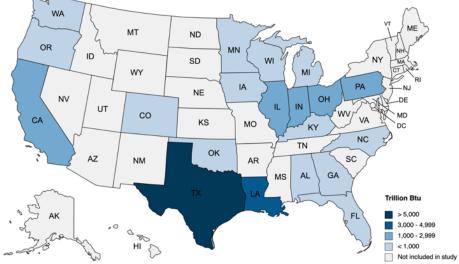


Figure. Segmentation of energy use across temperature levels by industry

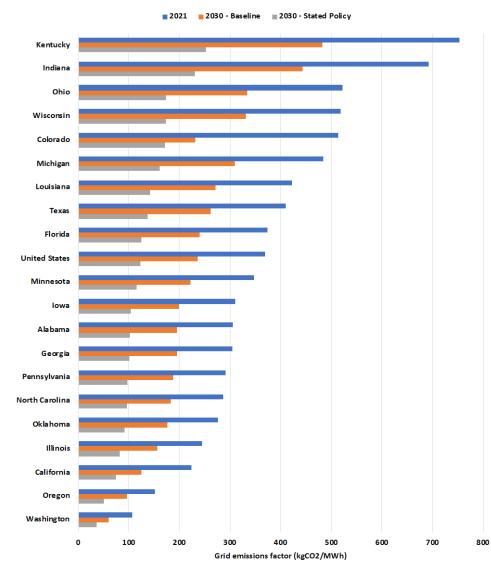
Two-thirds of process heat is used in the U.S. industry is for applications below 300°C (572°F)



Scope of Work

1	Alabama				
2	California				
3	Colorado				
4	Florida				
5	Georgia				
6	Illinois				
7	Indiana				
8	lowa				
9	Kentucky				
10	Louisiana				
11	Michigan				
12	Minnesota				
13	North Carolina				
14	Ohio				
15	Oklahoma				
16	Oregon				
17	Pennsylvania				
18	Texas				
19	Washington				
20	Wisconsin				

Share of industrial energy consumption in the U.S.


Figure. Industrial energy use in 2019 (trillion Btu)

Why State-level analysis?

Electricity grid emissions factors

• Grid emissions factor varies significantly across states. Some states' grids are clean enough for electrification today!

The United States has set a goal to reach 100% carbon emissionsfree electricity by 2035.

Figure. Electricity grid emissions factors in 2021 and 2030 (kgCO $_2$ /MWh)

Why State-level analysis?

Industrial energy prices in different states

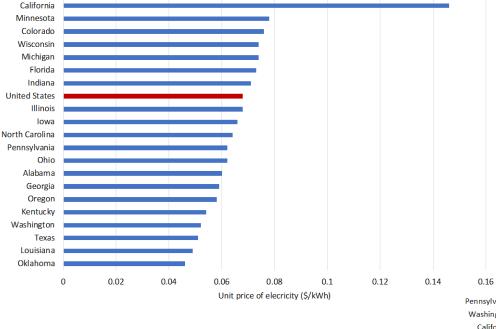
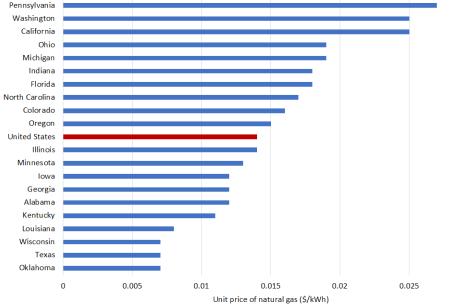



Figure B. Industrial natural gas unit price in

Figure A. Industrial electricity unit price in 2021 (\$/kWh)

0.03

Source: Adapted based on US DOE/EIA 2021

2021 (\$/kWh)

The ratio of industrial electricity to natural gas prices is more important than absolute energy prices. **The lower the ratio, the more attractive is industrial electrification**.

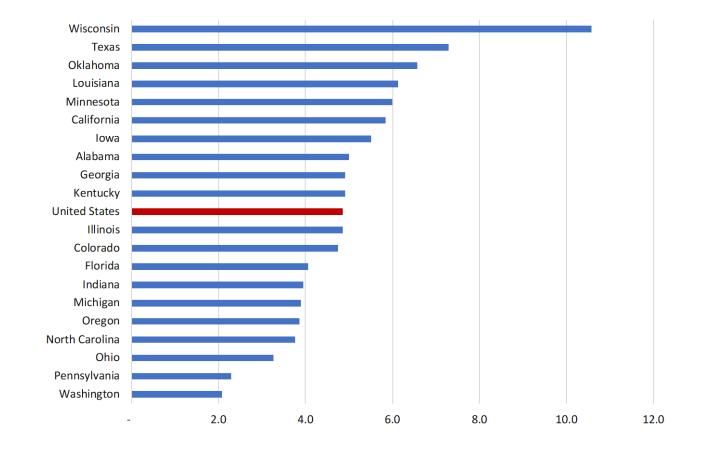
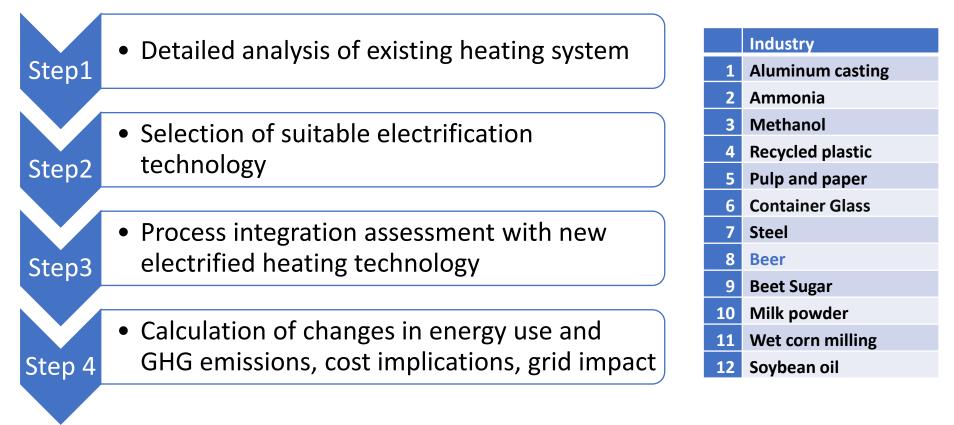



Figure. The ratio of the industrial unit price of electricity to natural gas in 2021

Bottom-up Analysis Method

Electrification of the **beer production** industry

Conventional System Process			All Electric Process		
Heating Equipment	Thermal Demand (kWh/Hectoliter)	Process steps	Electrical Demand (kWh/Hectoliter)	Heating Equipment *	
Centralized Gas Boiler System	2.9	Mashing	0.6	Heat Pump 4	
Centralized Gas Boiler System	12.9	Boiling	6.1	Heat Pump 1&2	
Centralized Gas Boiler System	5.2	Pasteurization	0.9	Heat Pump 3	
Centralized Gas Boiler System	12.0	Cleaning & Production Support	2.6	Heat Pump 4	
	33.0	Subtotal	10.2		
33.0		Total Energy	10.2		

Electrification of the beer production industry– Energy Saving

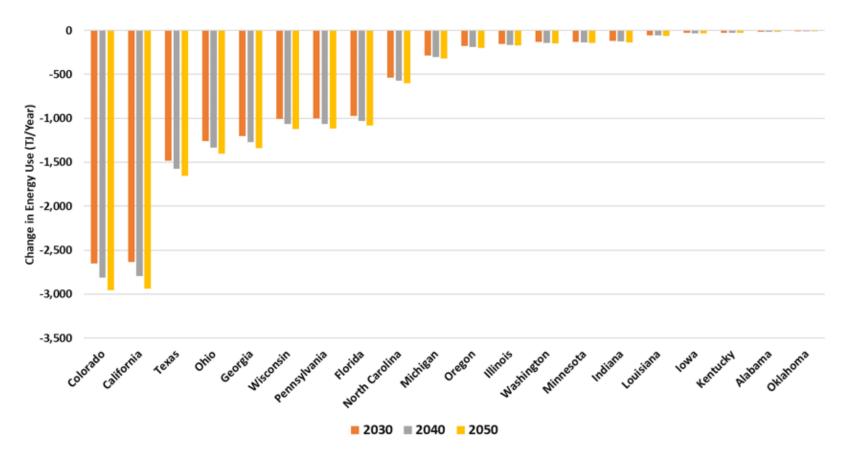


Figure. Change in the beer production industry's total final energy use after electrification (Technical potential assuming 100% adoption rate)

Electrification of the beer production industry - CO₂ Emissions Reduction

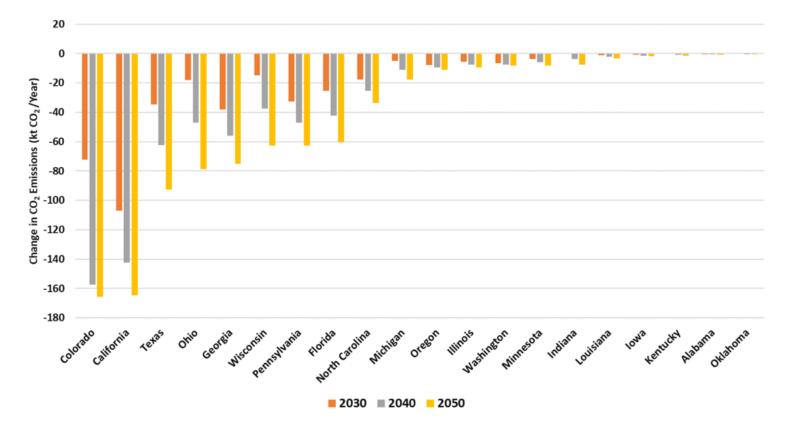
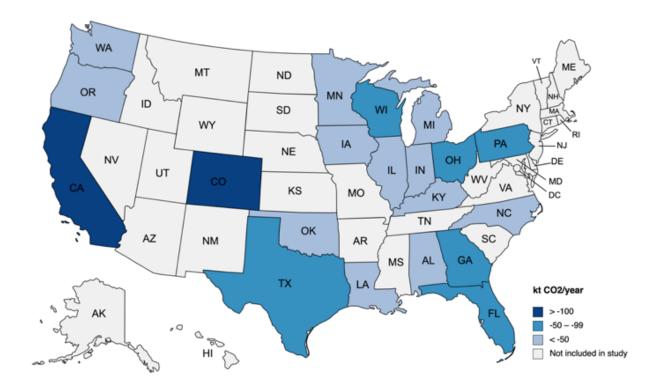



Figure A. Change in the beer production industry's net CO₂ emissions after electrification - **baseline scenario** (technical potential assuming 100% adoption rate)

- Baseline Scenario: Zero Carbon Grid in 2050 or as Stated in Each State's Target.
- Stated Policy Scenario: Zero Carbon Grid in 2035 in All States

Electrification of the beer production industry - CO₂ Emissions Reduction

- CO₂ emissions reductions can be achieved even <u>today</u> using <u>grid electricity</u> in most states studied.
- Plant-level CO₂ emissions reductions can be achieved today in any state through electrification projects that are tied with sufficient renewable electricity supply.

Figure. Change in CO₂ emissions in the container glass industry in 2050

Created with mapchart.net

Electrification of the **beer production** industry – Energy Cost

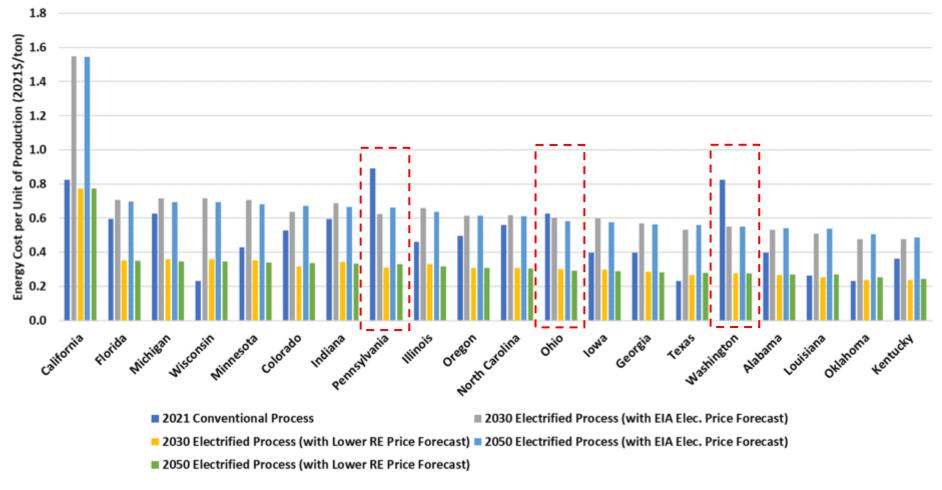


Figure. Energy cost per unit of production in the beer production industry

Energy cost is only a small portion of total manufacturing cost for many industrial subsectors. Therefore, a moderate increase in energy cost per unit of product resulting from electrification will have a minimal impact on the price of final product and final consumers.

Industrial electrification's impacts on electricity grid

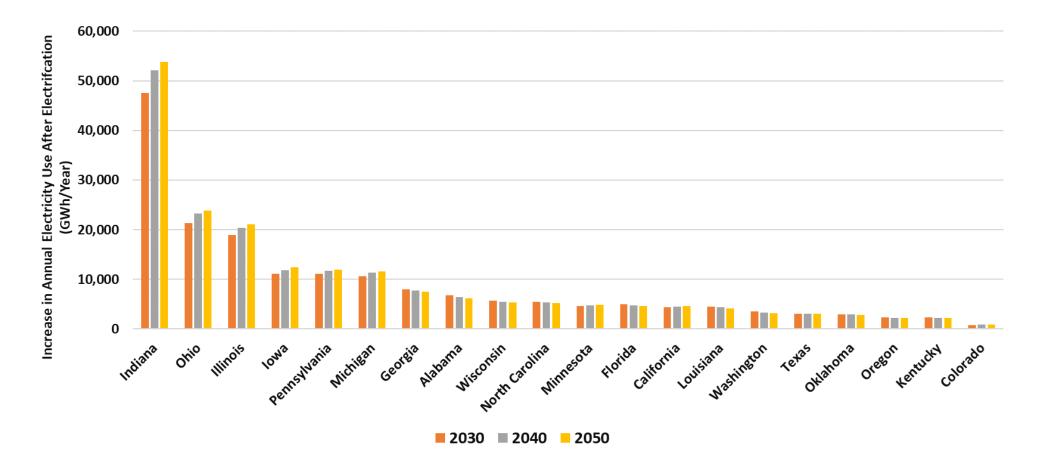


Figure. Increase in annual electricity consumption after industrial electrification in industries studied (GWh/year) (assuming 100% adoption rate)

Key takeaways

- There is **significant potential to decarbonize** the US industry with electrification.
- Using grid electricity, CO₂ emissions reduction from electrification can be achieved today in some states with clean electricity supply and in many more states in 2030.
- Plant-level CO₂ emissions reductions can be achieved today in any state through electrification projects that are tied with sufficient renewable electricity supply (e.g. through PPA).
- Energy cost per unit of production for electrified processes is higher but can be competitive with conventional processes if lower price RE electricity is available.
- Future electricity and fuel prices and potential carbon price on energy can substantially impact the economics of industrial electrification.
- Industrial electrification provides co-benefits (air pollution reduction, health benefits, production cost reduction, O&M cost reduction, etc).

Recommendations

- Identify the sweet spots and start there. Start in states with more favorable conditions [e.g., cleaner grid, lower ratio of electricity to natural gas prices, more favorable investment conditions and local incentives, etc.]
- The industry sector should initiate **partnerships** with government, academia, think tanks, and other stakeholders to develop and/or scale electrification technologies.
- Six impactful actions that would support increased industrial electrification in US states:
 - 1) Support demonstration of emerging electrification technologies and new applications of existing technologies,
 - 2) Financially incentivize electrification,
 - 3) Increase renewable electricity generation capacity,
 - 4) Enhance the electricity grid,
 - 5) Engage communities,
 - 6) Develop the workforce.
- The US\$369 billion in climate and clean energy incentives provided by the Inflation Reduction Act (IRA) provides powerful tailwinds for industrial electrification.

Thank You!

For more information, please contact: Cecilia Springer Email: <u>springer@globalefficiencyintel.com</u>

DIGA David Gardiner and Associates