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Outline

• Background 
– reducing energy usage and decarbonizing process heating holds 

the key to industrial decarbonization
• TEA and LCA

– integrated analysis methods used to assess the effectiveness of 
R&D in enabling industrial decarbonization

• 2,3-butanediol (BDO) separation [Energy efficiency pillar]
– a biomass-derived intermediate for producing sustainable 

aviation fuel for commercial aviation decarbonization
• Methanol production pathways (NG, biomass, mixed plastic 

waste, CO2) [Industrial electrification & LCFFES pillars]
– a versatile compound, finding utility as both a fuel and a chemical 

intermediate, critical to industrial decarbonization
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U.S. Primary Energy-Related CO2 Emissions by Economic Sector

Key messages: 
• The U.S. industrial sector accounted for 30% of U.S. CO2 emissions 

in 2020, with the five focus subsectors responsible for over half of 
the industrial contribution.

• These emissions are energy-related.

4,563 million MTCO2
Crosscutting decarbonization pillars
 Energy efficiency
 Industrial electrification
 Low-carbon fuels, feedstocks, and 

energy sources (LCFFES)
 Carbon capture, utilization, and 

storage (CCUS)
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U.S. Primary Energy Use by Economic Sector

Industrial
32%

Transportation
28%

Residential
21%

Commercial
19%

Total US 
Energy 

Consumption
(98 QUADS)

Separations
45-55%

 Process heating accounts for over half (51%) of 
all onsite energy consumption at 
manufacturing facilities1

 Separations account for 45-55% of industrial 
energy use and 10-15% of total U.S. energy 
consumption2

 Some separations as high as 50-70% of 
processing costs

 Require additional R&D to develop low-energy 
separation alternatives, and bridge the gap 
between small-scale and large-scale 
technologies3

 Must be synergistic with conversion processes, 
e.g., process intensification4

1. DOE’ 2022,  Industrial Decarbonization Roadmap.
2. Sholl and Lively.  “Seven chemical separations to change the world,” Nature, 2016 532: 425-437.
3. EERE. 2018. Moving Beyond Drop-In Replacements: Performance-Advantaged Biobased Chemicals
4. EERE. 2020. Integrated Strategies to Enable Lower-Cost Biofuels.

1 quad = 1015 BTU
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TEA is an integrated analysis technical approach

Assess technical, economic, & environmental feasibility of bioproduct/biofuel 
conversion processes:
• Detailed process analysis with rigorous mass and energy balances
• Assess the technical and economic viability of new processes and technologies
• Identified data needs and further R&D need to improve overall cost and efficiency
• Assess environmental impacts (greenhouse gas emissions, fossil fuel, and water 

consumption)
• Approach is consistent with  other DOE BETO sponsored analyses 

TEA

LCA

R&D

Economic 
model

Life cycle assessment 
(LCA) tools

Process 
model

LCA metrics
Life cycle inventory

Mass & energy 
balances

CostExperimental 
data

Minimum 
selling 
price

Other TEA applications
• TEA + LCA  marginal GHG abatement cost
• TEA  economic impacts, e.g., job growth 

via NREL’s Jobs and Economic Development 
Impact (JEDI) models
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To decarbonize industry, we must reduce separation energy usage

Davis, et al. 2018 https://doi.org/10.2172/1483234

2.3-BDO pathway

 BDO upgrading — dehydration + hydrogenation 
(cascade reactions, Cu-based bifunctional solid acid 
catalysts)

 Oligomerization (Amberlyst-6 resin catalyst)
 Hydrogenation (Pd/C catalyst)

2,3-butanediol (BDO) separation
an intermediate for sustainable biofuels

https://doi.org/10.2172/1483234
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2,3 Butanediol (BDO) Separation

To WWT

BDO
BP 177 ⁰C

Fermentation broth
~10 wt% BDO

Removing large 
volume of water 

> 140 ⁰C  BDO 
oligomerization

Preconcentrating BDO for downstream 
catalytic upgrading is desirable but 
challenging

• Background
– BDO produced by fermentation of sugars
– Converted to hydrocarbon fuels such as 

sustainable aviation fuels

• Composition of Broth
– 10 wt. % BDO
– 86 wt. % water
– 4 wt. % byproducts

• Challenges
– Low BDO concentration
– Water is more volatile than BDO
– To recover BDO by distillation the water in the 

broth must be evaporated
– Evaporating water makes distillation energy 

intensive
– High distillation temperature leads to oligomers 

(requiring hydrogenation)
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2,3-butanediol (BDO) separation—Membrane pervaporation 

Membrane pervaporation (BDO 30 wt%  50 wt%)

• Feed liquid at boiling point
• Phase change through membrane (evaporation 

of permeate; adiabatic pervaporation mode)  
cooling of feed, reheating required after each 
stage

• BDO concentration target not achieved in a single 
stage  in-series operation required

• Very low vacuum, i.e., 0.04 atm
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Membrane pervaporation (BDO 30  50 wt%)

2,3-butanediol (BDO) separation—Membrane pervaporation 

Vacuum Distillation

BDO wt%

Vacuum 
distillation 
+ MPV

2-stage 
vacuum 
distillation

The use of 
pervaporation on dilute 
BDO concentration 
stream did not show 
superior energy/cost 
savings compared to 
the vacuum distillation. 

10 wt% 30 wt% 50 wt%
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2,3-butanediol (BDO) separation—Reactive-extraction process

Wastewater

BDO

SteamBroth

Butanal

Dioxolane

Recycle

Reactive
Extraction

Butanal
Stripper

Reactive
Distillation

Butanal recovery
• Dioxolane  BDO + butanal, 

equilibrium limited, but overcome via 
reactive distillation

• Steam feed = 119% of the 
stoichiometric amount

• Mineral acid catalyst

Reactive extraction
• n-butanal acts as both a reactant and 

an extractant
• Exothermic (35 ⁰C), equilibrium 

limited
• Optimum n-butanal feed = 140% of 

the stoichiometric amount
• Amberlyst 14 catalyst

Kubic and Tan,  “Reactive Extraction Process for Separating 2,3-Butanediol from Fermentation Broth.”  Ind. Eng. Chem. Res. 2023, 62, 5241-5251.

• Standalone BDO separation cost $0.22/kg
• Total thermal energy 4.3 MJ/kg
• % of BDO LHV 17.2%
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Process BDO recovery BDO purity

(%) (%) (kJ/kg BDO) (% of LHV) ($/kg BDO) ($/GGE fuel)
(% of fuel 
MFSP)

(g CO2e/
MJ fuel)

(% GHG 
reduction)

Distillation 90% 99% 32,200 118% -- -- -- -- --
Vacuum Distillation + 
Membrane Pervaporation > 90% 50% 20,300 75% -- -- -- -- --
Multi-stage Vacuum 
Distillation > 90% > 99% 24,499 90% $0.18 $0.87 24.6% 55.1 34.4%
Solvent Extraction with Oleyl 
Alcohol 90% 99% 14,200 52% $0.46 $2.27 -- -- --
Liquid-Liquid Extraction 
(2-heptanol) > 90% 93.5% 5,331 20% $0.06 $0.32 12.6% -- --
Reactive Extraction > 90% > 99% 3,317 12% $0.07 $0.33 14.2% 30.6 63.6%
Liquid-Liquid Extraction 
(1-hexanol) + Membrane > 90% > 99% 1,271 5% $0.02 $0.12 5.3% 31.1 63.0%

Energey Consumption GHG EstimateCost Estimate

A Comparison of BDO Separation Processes

For BDO to be a feasible intermediate for sustainable biofuels such as SAF, the total energy usage for 
the BDO separation target was set to be no greater than 30% of its LHV.

Energy efficiency pillar – advancements minimize industrial energy demand, directly reducing the GHG 
emissions associated with fossil fuel combustion.1

Preliminary values

1. DOE’ 2022,  Industrial Decarbonization Roadmap.
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Methanol—as both a fuel and a chemical intermediate
Methanol applications

• Alternative transportation fuel
– marine shipping
– blended into motor gasoline abroad to increase combustion 

efficiency and reduce air pollution

• Fuel for power generation
– Power plants - combusted in gas turbines, steam turbines, or 

internal combustion engines
– Methanol fuel cell

• Chemical intermediate2

– Formaldehyde - a crucial building block in the manufacturing 
of resins, plastics, textiles, and diverse products

– Raw material - the creation of methyl esters, which are used 
as solvents, cleaning agents, and in biodiesel production

– Methanol-to-olefins - converted into olefins such as ethylene 
and propylene. These olefins serve as essential components 
in the production of plastics, synthetic fibers, and other 
petrochemical products.

 Three new plants expected to come online in 2019 and 
2020—a combined nameplate capacity of about 3.3 MMmt/y

 Would increase total U.S. methanol capacity to 9.4 MMmt/y, 
or 25,600 mt/d—a 45% increase from the 2019 U.S. capacity.1

1. EIA (2019) https://www.eia.gov/todayinenergy/detail.php?id=38412#
2. Baldwin, R.M., et al.. Recycling Plastic Waste to Produce Chemicals: A Techno-economic Analysis and Life-cycle 

Assessment. In: Sustainability Engineering, CRC Press (2023).

https://www.eia.gov/todayinenergy/detail.php?id=38412
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Methanol production pathways

Source: ANL & NREL, Masum, F.H, et al., manuscript in preparation.

Mixed Plastic 
Waste

RCC Methanol
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Gasification of mixed plastic waste

Afzal et al. Green Chem., 2023, DOI: 10.1039/D3GC00679D. 

Motivation to use MPW gasification
• Gasification is “feedstock-agnostic”
• Convert unsorted MPW to fuels and 

valuable chemicals
• Conserve natural resource - 

producing syngas from a waste 
plastic feedstock can reduce the 
consumption of natural gas that 
would have otherwise been used to 
synthesize the same product

MPW feed
240 t/d
50/50 mix of PE and PP
$0.60/kg
Carbon, 85.9%
Hydrogen, 14%

Steam gasification
Circulating fluidized bed
Steam/MPW ratio 2.0
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Gasification of mixed plastic waste

Afzal et al. Green Chem., 2023, DOI: 10.1039/D3GC00679D. 
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Gasification of mixed plastic waste

Afzal et al. Green Chem., 2023, DOI: 10.1039/D3GC00679D. 

• Methanol MSP as a function of 
MPW feedstock prices. 

• Cost parity with fossil-fuel-
based methanol ($0.30/kg) 
could be achieved if MPW 
feedstock is available for 
≤$0.02/kg.
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Gasification of mixed plastic waste

Afzal et al. Green Chem., 2023, DOI: 10.1039/D3GC00679D. 

• Supply chain energy: MPW < fossil 
(17.8 vs. 37.0 MJ/kg)

– Fossil – NG feedstock
– MPW – “waste” thus no 

associated upstream burden

Supply chain energy
Supply chain GHG emissions

• GHG emissions: MPW >> fossil (1.1 vs. 0.4 kg CO2e/kg)
– Fossil – 1 SMR
– MPW – higher energy demand (process heating), 3-unit 

operation (gasification/tar reformer/steam reformer)

Message:
Implementing the 4 IDR 
pillars to enable MPW 
gasification for 
methanolHigh process heating

High GHG
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Pressure-Swing Process Reactive CO2 Capture and Conversion to Methanol

• Multi-bed pressure-swing capture-conversion system
• T or P swing to optimize product formation.

• Green H2-based 
technologies have much 
lower carbon intensity as 
compared to SMR 
process

• Electrification of 
hydrogen production for 
industrial process use 
(e.g., of industrial 
electrification pillar)

Source: NREL, Martin, J., et al., manuscript in preparation.

• RCC technology is not 
competitive with 
Baseline #1 due to 
cost of green H2, but 
much closer to 
Baseline #2

• Improvement in green 
H2 production 
technology drives 
down the cost for the 
modelled plant startup 
years
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Methanol Production Process
Cost 

Estimate
GHG 

Estimate
GHG 

Reduction1 MAC3
Alt. Marine 

Fuel
GHG 

Reduction2

$/gal g CO2e/MJ (%)
$/kg CO2e 

abated g CO2e/MJ (%)
Coal ǀ Gasification $1.45 114 -153% -$0.20 196 -104%
Waste Plastic Mix ǀ Gasification $2.10 85 -88% -$0.63 167 -74%
MSW ǀ Gasification $1.65 55 -22% -$1.79 137 -42%
Natural Gas ǀ Steam Reforming $0.60 45 0%  127 -32%
Waste CO2 ǀ Reactive Capture Conversion $2.25 18 60% $1.01 100 -4%
Waste CO2 ǀ Electrolysis -- -56 224% -- 26 73%
LNG from FOG ǀ Steam Reforming -- -62 238% -- 20 79%
Biomass ǀ Indirect Liquefection $1.18 -65 244% $0.09 17 82%
RNG from sludge ǀ Steam Reforming -- -94 309% -- -12 113%
RNG from FOG ǀ Steam Reforming -- -140 411% -- -58 160%
RNG from food waste ǀ Steam Reforming -- -159 453% -- -77 180%
RNG from manure ǀ Steam Reforming -- -243 640% -- -161 268%
1 relative to natural gas steam reforming 3 negative "-" values can represent "carbon price"
2 relative to HFO (1% S), 96 g CO2e/MJ * Supply chain GHG determined using MFI

A comparison of methanol production cost and GHG estimates
Source: ANL & NREL, Masum, F.H.., et al., manuscript in preparation.

• Methanol can be produced via numerous conversion pathways.
• Methanol carbon intensities vary significantly and are dictated by pathway and feedstock types.
• Low-carbon methanol can help industrial decarbonization.
• Combined TEA and LCA analysis is required to assess economic feasibility and GHG reduction 

potential. 

Preliminary values



20

Thank you!
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