## Market and Climate Opportunities for CO<sub>2</sub> Utilization

Volker Sick

Professor, University of Michigan; Director, Global CO<sub>2</sub> Initiative

NSF Workshop on Advanced Manufacturing for Industrial Decarbonization August 3&4, 2023, Arlington, VA



# CCU products are needed for the energy and industry sectors

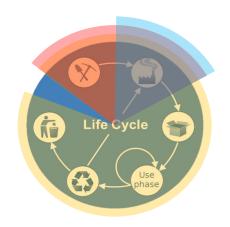
- Necessary for net-zero CO<sub>2</sub> emissions
- Offer carbon capture AND useful and valuable goods
- Complement other carbon management options



## Distinct differences in CCU products

- Carbon sources for CCU
  - fossil based industrial processes
  - non-fossil processes
  - direct air capture
  - direct ocean capture

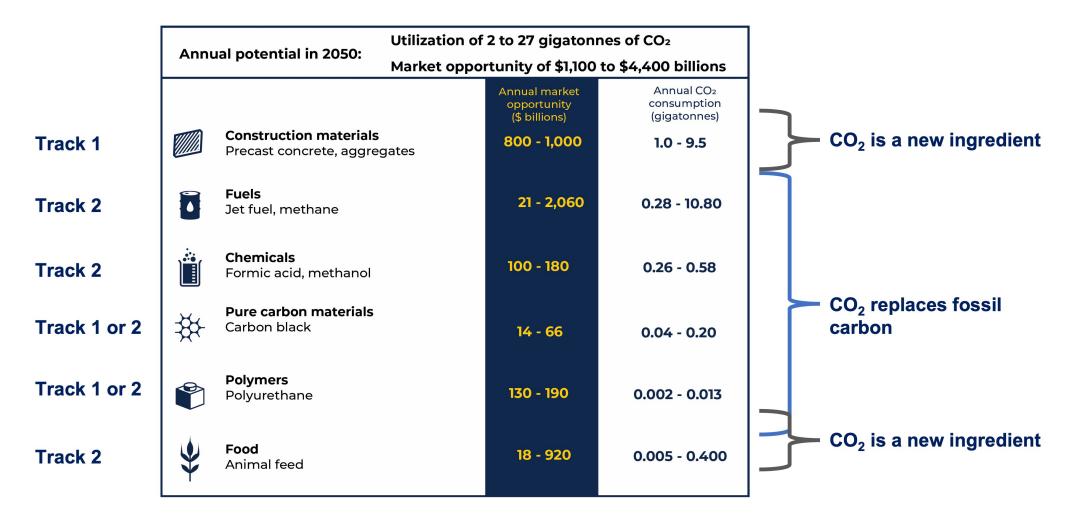
Carbon — Carbon Capture 공 Capture and 열 and Storage Utilization


- Track 1 CCU products: removal/storage of carbon for > 100 years
- Track 2 CCU products: decompose to CO<sub>2</sub> in < 100 years</li>
- Origin, magnitude, and destiny of the carbon determine climate impact

# CO<sub>2</sub> source and sink combinations are important

|                           | Process Type               |                                      |                               | Product Type                                                        |                        |                                                                    |             |                                                                   |      |                   |
|---------------------------|----------------------------|--------------------------------------|-------------------------------|---------------------------------------------------------------------|------------------------|--------------------------------------------------------------------|-------------|-------------------------------------------------------------------|------|-------------------|
|                           |                            |                                      |                               | Track 1                                                             |                        | Track 1/2                                                          |             | Track 2                                                           |      |                   |
| CO <sub>2</sub><br>Source |                            | Enhanced Oil<br>Recovery             | Geological<br>Sequestration   | Construction<br>Materials                                           | Specialty<br>Materials | Chemicals                                                          | Agriculture | Fuels                                                             | Food | Working<br>Fluids |
| Fossil Fuels              | Coal<br>Oil<br>Natural Gas | Continues<br>dependence<br>on fossil | Net point source reduction of | Profitable Storage - continued dependence on fossil CO <sub>2</sub> |                        | Modest net impact on emissions - can reduce demand but most fossil |             | Modest net impact on emissions - can reduce demand but all fossil |      |                   |
| Fossil Carbon             | Limestone                  | resources                            | emissions                     | TOSSIT CO <sub>2</sub>                                              |                        | carbon is released                                                 |             | carbon is released                                                |      |                   |
| Bio-captured              | Biomass                    | Replaces fossil                      | Permanent                     |                                                                     |                        |                                                                    |             |                                                                   |      |                   |
| Ambient                   | Air                        | CO <sub>2</sub> - supports continued | storage - no<br>economic      | Sweet Spot - negative<br>emissions - economic<br>return             |                        | Potential for permanent storage >100 years                         |             | Circular Economy                                                  |      |                   |
|                           | Water                      | fossil fuel use                      | return                        |                                                                     |                        |                                                                    |             |                                                                   |      |                   |

# Rigorous and transparent assessments are essential

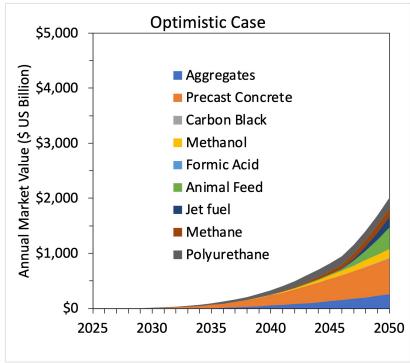

- to ensure climate benefits
- to identify economic viability
- to factor in additional aspects, including societal considerations and alternatives to CCU products

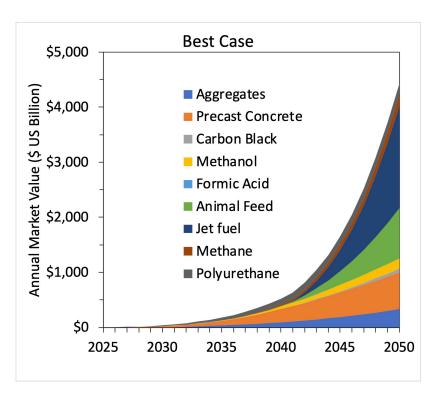




https://www.globalco2initiative.org/evaluation/ https://assessccus.globalco2initiative.org/


## Climate and economic significance





Compare this to expected remaining emissions, e.g. IEA 2020 (CCUS In Clean Energy Transitions)



#### Opportunities are big but sensitive to actions taken!







2 – 27 gigatonnes of CO<sub>2</sub>/year



# Magnitudes and time scales for CCUS action

Now (finite need)

Now & perpetually



Legacy emissions



Inevitable emissions

#### Implications on the long-term need for CCUS

CO<sub>2</sub> capture and removal (CCS, CDR)

- Now and long enough to bring CO<sub>2</sub> in water and air to an acceptable level
- Draw down is strongly aided by natural solutions, which should **not** be used to generate carbon offsets



- Implemented now to build capacity and create cost competitiveness
- Perpetually needed to provide carbon-based products
- Needed together with bio-mass based and recycled carbon products, that cannot cover market needs alone
- Balance the carbon budget (Track 1 materials!)



