Carbon Utilization in Concrete Manufacturing

Overview

- Background on cement and concrete production
- Case study of Solidia Cement®
- Broader set of emerging carbon-utilizing concrete technologies

Background -- Portland cement production

Calcination and cement clinker formation

- Limestone and sand or clay heated to 1450 C
- $CaCO_3 \rightarrow CaO + CO_2$

<u>Manishwiki15;</u> This file is licensed under the <u>Creative Commons Attribution-Share</u> <u>Alike 3.0 Unported</u> license. 7% of global CO₂ emissions

Background – concrete is made with cement

Portland cement reacts with water

Cement is the primary source of concrete CO₂ emissions

Case study of Solidia Cement

Development of Solidia Cement

- Natural wollastonite
- Countertops, architectural panels

2007 - 2011

- Development of synthetic CCSC
- Pilot Kiln Production

2012-2013

- Pilot & Commercial Clinker Productions
- >15,000t clinker produced

2014 - 2022

SOLIDIA®

Solidia Cement

Less energy, lower CO₂ emissions, lower cost = a better and more sustainable cement

SOLIDIA"

Solidia Cement does not react with water Mineralizes at least 20% of the cement mass in CO₂

Solidia Technologies supply chain – dry cast concrete

Solidia Concrete for dry cast applications

- Reacts and hardens with CO₂ (vs. OPC with water)
- Process and product performance advantages
- Industrial CO_2 capture, utilization and storage (CCUS) opportunity
- Commercialized in NY tri-state region; expanding into TX triangle
- Completed 30+ trials with dry cast plants across 12 EU countries

CO₂ delivery system at paver plant Wrightstown, NJ

Solidia paver installation Princeton, NJ

Background -- supplementary cementitious materials (SCM)

- Typically fly ash
- Enhance concrete function
- Reduce cement fraction of concrete
- Reduce CO₂ emissions associated with concrete

Solidia SCM[™]

Amorphous SiO₂ – reactive at room temperature with calcium hydroxide produced during OPC hydration

S-CEMTM + CO₂
$$\rightarrow$$
 CaCO₃ + SiO₂
Solidia SCMTM

- A functional filler for concrete
- Engineered to meet demand
- Blends with OPC; up to 35% replacement
- Product performance advantages
- Eliminates quality issues
- Can be manufactured locally anywhere

LIDIA®

Sample cylinders for testing Bethlehem, PA

Trial pour w/ 35% S-SCM replacement Bethlehem, PA

% CO₂ saved compared to OPC with varying replacement levels of Solidia SCM[™]

*includes CO_2 emissions reduction at kiln + CO_2 mineralized during carbonation

CO₂ impact in carbonated SCM

- Up to 68% reduction in footprint compared to OPC clinker
- High potential for use of waste gas, or direct utilization of flue gas

- -511 kg-CO₂ / t clinker (68% Reduction)
- 109 kg-CO₂ / t clinker Abated
 - 0.81 t CCSC Clinker = 1.0t Carbonated CCSC SCM
- 194 kg-CO₂ / t clinker Mineralized
 - >24% mass of CCSC mineralized

Solidia Technologies supply chain – Solidia SCM™

Solidia solutions

CO₂ abatement through emissions reduction and CCUS in cement and concrete manufacturing

Solidia Cement

Reduce CO₂ emissions

- \downarrow process CO₂ (thermal)
- \downarrow product CO₂ (calcination)

Solidia Concrete

Capture CO₂ gas

mineralize and store CO₂ as calcium carbonate

Solidia SCM

Avoid high embodied CO₂

replace Portland cement

Current State of Development

Building commercial concrete plant

1,000 ton/yr SCM pilot

Solidia Technologies To Open Commercial Manufacturing Facility for Dry-Cast Concrete Products

53,000-square-foot plant will leverage Solidia's groundbreaking technology to produce pavers and concrete masonry units with premium performance capabilities compared to traditional materials.

SAN ANTONIO, TEXAS, May 16, 2023 — <u>Solidia Technologies</u>[™], a leading provider of decarbonization technologies and sustainable, high-performance construction and building material solutions, has announced its first concrete products manufacturing plant. The plant will utilize an existing 53,000-square-foot building on rail-served acreage located at Alamo Junction in Elmendorf, Texas, near Solidia's headquarters in San Antonio. The wholly owned commercial dry-cast facility will manufacture pavers and concrete products using Solidia Cement[®], a pioneering technology that solves crucial pain points for architects and contractors, including by providing greater strength and superior aesthetics, while dramatically reducing cement's carbon footprint.

Solidia Technologies Expands SCM Capabilities, Capacity at San Antonio, Texas, Headquarters

With increased production capabilities, the facility marks a crucial milestone in the company's progress with Supplementary Cementitious Materials from R&D to commercial venture.

SAN ANTONIO, TEXAS, March 21, 2023 — <u>Solidia Technologies</u>[®], a leading provider of decarbonization technologies and sustainable solutions to the construction and building materials industries, is expanding production capacity of its proprietary Supplementary Cementitious Material (SCM), a key component used in concrete, at its headquarters in San Antonio, Texas. Solidia's high-performing, engineered SCM product improves the durability, workability, and overall properties of concrete while mineralizing captured CO_2 to reduce greenhouse gas emissions by 30% to 40%. With significantly more production capacity and proximity to key customers, suppliers, and partners, the expansion continues the company's move from research and development into commercialization.

ASTM specifications for Cements that Require Carbonation Curing

Standard Specification for Cements that Require Carbonation Curing

Standard Test Methods for Cements that Require Carbonation Curing

Solidia CO₂ impact on a global scale

CO₂ Savings per Year*

At scale, the potential total CO₂ savings from Solidia technologies approaches 1 Gt each year*

*0.94 Gt assumes full-market conversion across the 2020 4Gt estimated global OPC market.

Technoeconomic analysis

- Production of Solidia Concrete from Solidia Cement and CO2 is market-proven to be profitable
- Solidia SCM production from Solidia Cement and CO2 from waste kiln flue gas is expected to be profitable
- General availability of incentives
 - 45Q tax credit of \$60/Mt for capture of CO2 for utilization in a process that chemically converts to a compound in which such CO2 is securely stored
 - 48C tax credit for 30% of the cost to re-equip a facility with equipment that reduces GHG emissions by at least 20%
 - Federal Buy Clean Initiative
 - State incentives
 - Voluntary market for carbon removal

Broader set of emerging carbon-utilizing concrete technologies

Carbon utilization in concrete manufacturing

Many places to play/many participants

- Annual global concrete production ~ 34 billion MT
- Annual global CO2 emissions from energy combustion and industrial processes ~37 billion MT

Solidia partners

Government

Academia

U.S. DOE

- SCM Development
- Five-year program on CO₂ storage
- Support for commercialization in US

U.S. Environmental Protection Agency (EPA)

Incorporation of Solidia Cement and SCMs

U.S. Department of Transportation (DOT)

• Examine transportation infrastructure applications

Climate Change and Emissions Management Corporation (CCEMC)

• Support for commercialization in Alberta, Canada

EU Life

 Solid Life Project: Scaling and testing of Solidia Cement & Precast

Oregon State University

• Mechanisms of carbonation curing

Georgia Tech

• Solidia SCM[™] performance

Purdue University

■ Solidia Concrete[™] microstructure & durability

University of South Florida

Corrosions of steel rebar in Solidia Concrete

Ohio University

Methods to passivate raw surface of steel rebar

Rutgers, The State University of New Jersey

- Solidia Concrete cast-in-place applications
- Solidia Cement[™] synthesis

