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Cheap Energy Storage is Key for the Renewable Energy Transition
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Short-Term and Long-Term Energy Storage Requirements
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Short-Term and Long-Term Energy Storage Requirements
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= Alternative storage solutions (e.g., _
. . solar generation
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needed for long duration energy storage, |
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such as seasonal energy storage.

= There is excess solar generation in the
summer months and a shortage in winter
months (figure shown for Europe)

= Electrical demand will increase, and
dynamics will change as electrification of
transportation (e.g., battery electric
vehicles) and households (e.g., heat
pump heating)
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Gabrielli, P., Poluzzi, A., Kramer, G.J., Spiers, C., Mazzotti, M. and Gazzani, M., 2020. Seasonal energy
storage for zero-emissions multi-energy systems via underground hydrogen storage. Renewable and
Sustainable Energy Reviews, 121, p.109629.
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Several Industries Are Not Easily Electrified

End-Use Consumption by End-Use Sector
40

= Industry and transportation are largest energy consumers (end-use).

= Transportation sector currently represents 28% of the U.S. primary 30
energy consumption (about 28 quadrillion BTU’s), of which 24.5% is
due to commercial and freight transport, 8.7% aviation and 4.6% 20
shipping. Transportation
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= Energy use in industrial sector dominated by natural gas and
petroleum, not electricity. Figure 2.4 Industrial Sector Energy Consumption

(Quadrillion Btu)
[ ]

By Major Source, 1949-2022
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Natural Gas

= Petroleum

= Cement manufacturing ~ 8% worldwide CO, emissions, requires
thermal energy @ 1450 ° C.

= Iron and steel ~ 8% worldwide CO, emissions, requires carbon
feedstock and thermal energy @ 1500 to 1650 ° C

= Ammonia Production — requires H,, currently derived primarily
from natural gas. ~ 2% of total worldwide energy consumption and .
1.3% of C02 emissions. 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Renewable Energy

U.S. Energy Information Administration, Monthly Energy Review, July 2023,
https://www.eia.gov/totalenergy/data/monthly/
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Concentrating Solar Power (CSP) at a Promising Intersection
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Concentrating Solar Power (CSP) at a Promising Intersection

£S5 | ’,/—‘\
.2/ SOLAR éI:étfiE:ts
RECEIVER (Bmler] — transmitted
Concentrated to the grid

sunlight converts
water in boiler
to steam

ELECTRICITY

= STEAM

‘4 THERMAL STORAGE

Integrated, cost-effective
thermal energy storage

L uuil

WATER sl

TI111111

3 'TURBINE

Steam powered
turbine produces

> electricit
'%%'!m\m@ \ g y

1) SOFTWARE-CONTROLLED HELIOSTATS

Concentrate heat on a boiler mounted in the
solar receiver

Images: http://www.brightsourceenergy.com/ 9



Department of Mechanical and Aerospace Engineering

Concentrating Solar Power (CSP) at a Promising Intersection

= Cheap thermal energy storage for 24/7

utilization ,, N
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Concentrating Solar Power (CSP) at a Promising Intersection

= Thermal Energy Storage (TES) Costs
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Turchi, C.; Boyd, M.; Kesseli, D.; Kurup, P.; Mehos, M.; Neises, T.; Sharan, P.; Wagner, M.; Wendelin,
T. (2019) CSP Systems Analysis - Final Project Report. NREL/TP-5500-72856. (PDF 4.9 \MB) Images: http://www.brightsourceenergy.com/ 11
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Thermal Routes to Solar Fuel Production

Thermochemical Fuel Production Pathways
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Scheffe, J., McCord, D. and Gordon, D., 2022. Hydrogen (or Syngas) Generation—Solar Thermal.
Advances in Energy Storage: Latest Developments from R&D to the Market, pp.439-487.
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Thermochemical Fuel Production
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Thermochemical Dissociation of H,O
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SOA ETH Zurich Reactor

B Endothermic reduction step (O, generation)

- Fl rSt Step Bl Exothermic oxidation step (CO generation) ceria RPC
. . W_
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= Second Step: quartz window |
. .
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solar radiation

= Directly irradiated concept

= Ceria SOA material — record
5% solar to fuel efficiency

= Relatively high temperature CO, thermal insulation
(1500 °C) and large

temperatu re SWing between f| rSt Marxer, Daniel, et al. "Solar thermochemical splitting of CO 2 into separate streams of CO and O 2 with high
o selectivity, stability, conversion, and efficiency." Energy & Environmental Science 10.5 (2017): 1142-1149.
and second steps (~500 ° C), VSRR YRy

leading to large irreversibility

gas-collection gap
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Our New Concept Aimed at Scaleup of Solar Fuels

design of reactor and
receiver

Collaboration between
U. Florida and
Synhelion SA.

Efficient Solar Radiation Absorption
Integrated with TES for 24/7 Operation

Solar Thermochemical H,O (or CO,) Splitting
with Candidate La-Sr-Mn-Ga Replica Foam
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Solar-driven Chemical Looping Reforming of Methane
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Solar Reactor Development

" (1) inner R-type thermocouple

" (2) KF-50 quick coupling, compression port adapter
" (3) outer silicon carbide tube

" (4) steel enclosure

" (5) packed bed of ceria

" (6) heated cavity

" (7) reticulated alumina foam

" (8) alumina/mullite fiber board insulation

* (9) inner porous silicon carbide tube

" (10) K-type thermocouples

19
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Chemical Looping Enables Ultra High Conversions and Selectivity

= Step 1: CH, + (1/Ad)CeO,_ 5 — (1/Ad) CeO, 5 + CO + 2H,

= Step 2: CO, + (1/Ad)Ce0, 5 — (1/Ad) CeO, 5 + CO

= Exemplary results shown below for 5% Ni-CeO, at 700 °C

= Experiments conducted in packed bed with no temperature swing

= Have demonstrated CH, conversion > than 98% and syngas selectivity > 95%
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Conclusions

= Thermal energy storage solutions are a cost-effective energy storage strategy.

= Higher temperatures than CSP are required, which lead to technical challenges that can be
overcome with manufacturing innovations.

22
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