

Oak Ridge National Laboratory

Research & Analysis Group

Acknowledgements

ORNL Co-authors and Contributors

- Senthil Sundaramoorthy, ORNL
- Chris Price, ORNL
- Dipti Kamath, ORNL
- Thomas Wenning, ORNL

DOE Advisors

- Joe Cresko, DOE IEDO
- John O'Neill, DOE IEDO

Industry's Significant Energy Demand and CO₂ Emissions

Industrial sector is comprised of manufacturing | agriculture | mining | construction

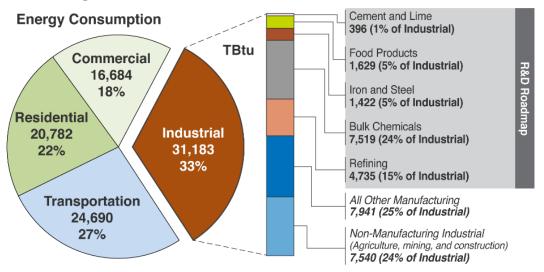
ACCOUNTS FOR 33%

30%

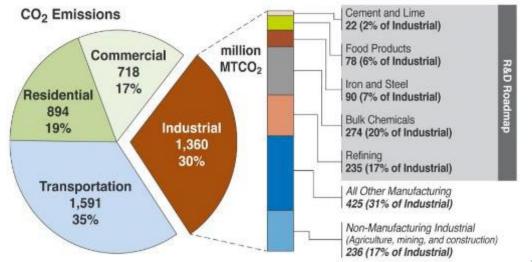
of the nation's primary energy use

of CO₂ emissions

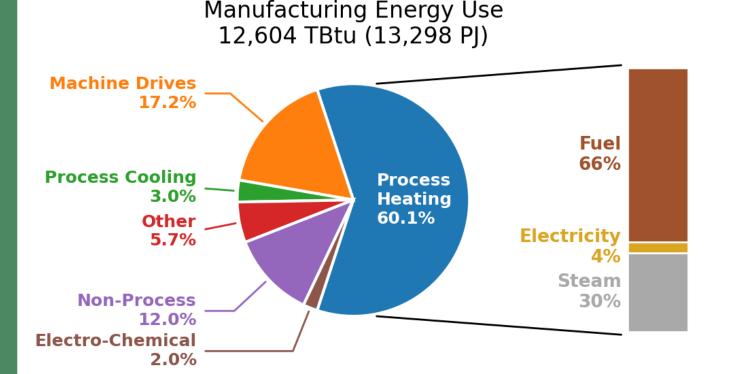
Anticipated industrial sector energy demand growth of 30% by 2050 may result in a

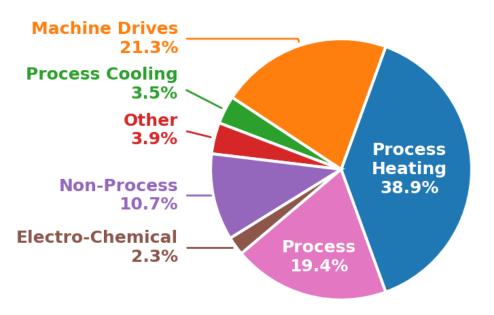

17% CO₂ emissions increase

Technological advances in manufacturing will be critical to enabling decarbonization for other sectors.


Data source: Energy Information Administration (EIA) <u>Annual</u> Energy Outlook 2021 with Projections to 2050.

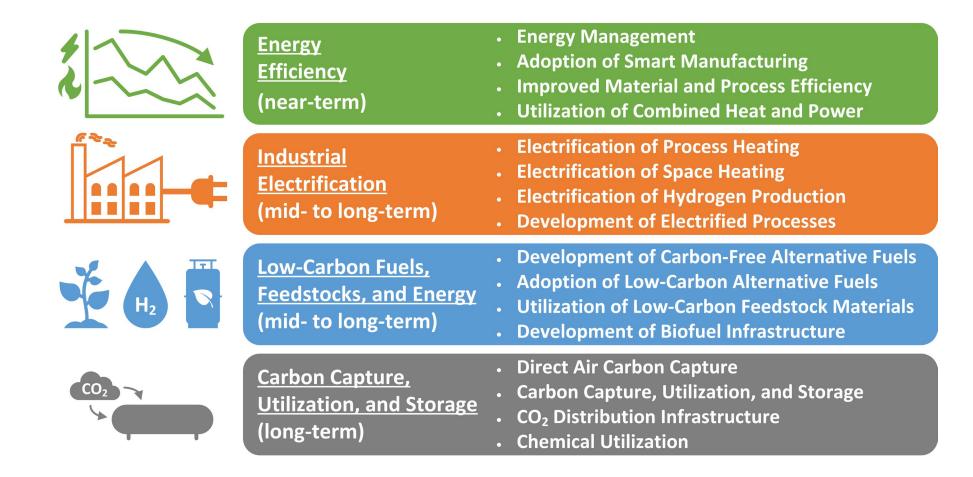
OAK RIDGE National Laboratory


U.S. Energy Consumption by Sector and Subsector (2020)


U.S. Energy-related CO₂ Emissions by Sector and

Energy Use and Emissions in Manufacturing Sector

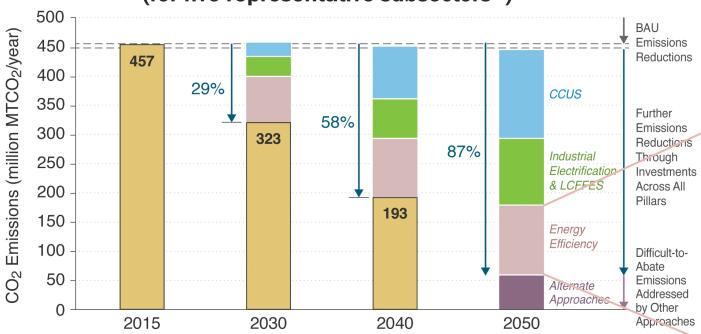
Manufacturing CO₂e Emissions 1021 MMst* (927 MMmt**)



*Million Short Tons, **Million Metric Tons

Source: DOE Energy Footprint Analysis based on Energy Information Administration's Manufacturing Energy Consumption Survey (MECS) data for 2018.

The Industrial Decarbonization Pillars


Energy efficiency advancements minimize industrial energy demand, directly reducing the GHG emissions associated with fossil fuel combustion.

Energy Efficiency as a Foundational Technology Pillar

Path to Net-Zero CO₂ Emissions

(for five representative subsectors*)

- Remaining GHG Emissions Emission Reduction by CCUS
- Emissions Reduction by Industrial Electrification & LCFFES Emissions Reduction by Energy Efficiency
- Emissions Reduction by Alternate Approaches (e.g., Negative Emissions Technologies)

Data source: Scenario modeling based on *Roadmap* findings (this study).

Energy Efficiency Pillar

- 1. Strategic Energy Management
- 2. System Efficiency
- 3. Smart

 Manufacturing
- 4. Materials and life cycle Efficiency
- 5. Combined Heat & Power

Source: Industrial Decarbonization Roadmap; DOE/EE-2635; United States Department of Energy: Washington, DC, USA, 2022.

National Laboratory

^{*}Subsectors included in Roadmap analysis: Iron & Steel, Petroleum Refining, Cement, select chemicals (ammonia, methanol, and benzene, toluene, and xylenes (BTX)), and select food & beverage products (beer, beet sugar, cane sugar, fluid milk, red meat, soybean oil, and wet corn milling).

Strategic Energy Management

- Energy Performance Improvement Platform
 - Energy efficiency is only one focus
 - Integrated demand side management (IDSM)
 - Resilience, security, demand, supply
 - Decarbonization
- Operational Excellence Program
 - Policies and procedures
 - Systematic approach
 - Change management
- Broader Organizational Framework
 - Energy management platform integrated into business systems
 - (Multinational) Corporate reporting, compliance, and alignment
 - Demonstrates action and commitment to long term success

A management system is:

- ✓ Say what you do
- ✓ Do what you say
- ✓ Prove it
- ✓ Improve it

EnMS Programs and Support of ISO 50001 Standard

SELF ATTEST

CERTIFY

VERIFY

- Complete 25 steps in Navigator
- Self-attest to completion
- Report energy performance
- Recognition by DOE

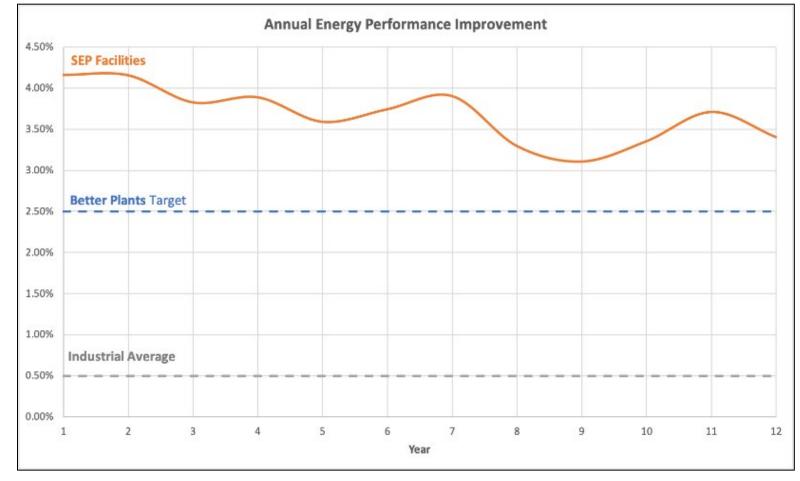
- ANAB-accredited audit to certify to standard
- DOE support of US TAG/TC 301

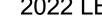
- Requires ISO 50001 certification
- Robust M&V protocol
- 3rd party energy performance verification audit
- SEP 50001 Certification
- Professional certifications
- Elevated recognition by DOE

Time required to complete: flexible

Time required to complete: 12-18 months

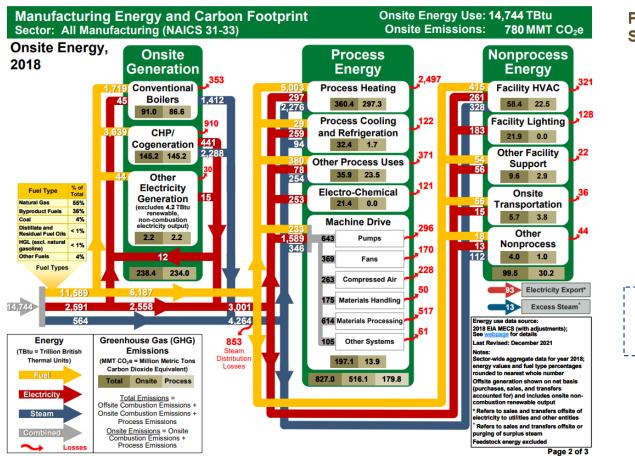
Time required to complete: 12-18 months




Superior Energy Performance 50001 Program

Annual Energy

- Analysis of eleven years of SEP program participants' energy savings shows *a 4.2% improvement* across all facilities in the first year.
- By the 11th year, the facilities are still achieving a 3.4% year on year improvement in energy performance.
- Far exceeds the average improvement in energy intensity across all of industry
 - 0.5%/year per EIA
 - 1.3%/year per IEA
- Journal article to publish in Sustainable Energy Technologies and Assessments in late 2023


Research Findings: Energy Management Saves More Energy

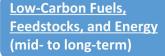
Energy Efficiency of Industrial Systems

Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by

Smart Manufacturing Pathways for Industrial Decarbonization and Thermal Process Intensification

Industrial Decarbonization

Energy Efficiency (near-term)


- Adoption of Smart Manufacturing
- Improved Material and Process Efficiency
- Utilization of Combined Heat and Power

- · Electrification of Process Heating
- Electrification of Space Heating
- Electrification of Hydrogen Production
- Development of Electrified Processes

- Development of Carbon-Free Alternative Fuels
- Adoption of Low-Carbon Alternative Fuels
- Utilization of Low-Carbon Feedstock Materials
- Development of Biofuel Infrastructure

- Carbon Capture,
 Utilization, and Storage
 (long-term)
- Direct Air Carbon Capture
- Carbon Capture, Utilization, and Storage
- **CO₂ Distribution Infrastructure**
- Chemical Utilization

Thermal Process Intensification²

Low-Thermal Budget <u>Transformative</u> (mid- to long-term)

- Electrolysis and electrodialysis
- Microwave and radio frequency processing
- Drying via ultrasound processing and membrane separation
- Hydrogen-based production of ammonia, ethanol etc.

Alternative Thermal Processing (near- to mid-term)

- Electric, induction, and resistance heating
- Alternative liquid biofuels or biochemicals
- Hybrid fuel systems
- Solar thermal systems

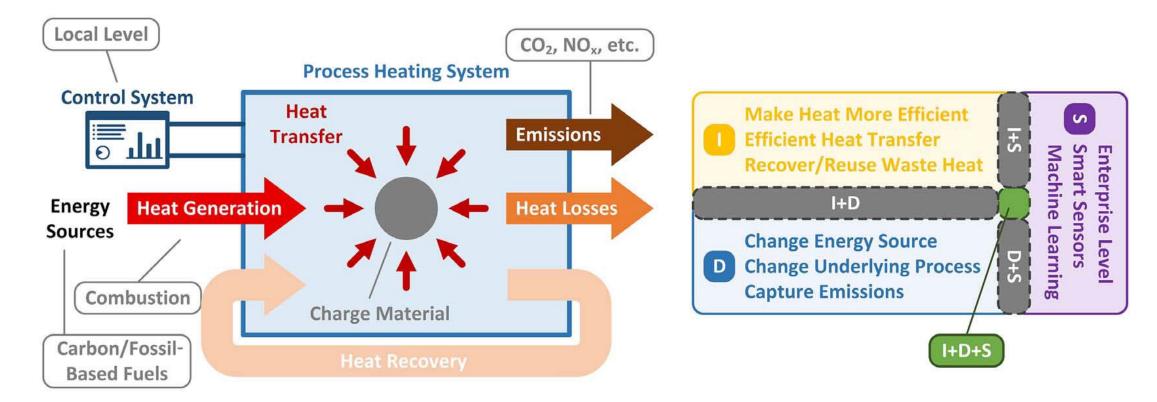
<u>Transformative</u> <u>Supplemental</u> (near-term)

- Smart IoT devices for system optimization
- Smart manufacturing (e.g., artificial intelligence, digital twins, predictive process controls)
- Flexible, modular manufacturing and operations design

Waste Heat
Management
(near-term)

- High-temp heat pumps
- Thermal energy storage and waste heat to power
- Recuperators, regenerators, and economizers
- Thermoelectric devices, heat pipes, etc.

Smart manufacturing pathways offer a way to both decarbonize and intensify existing processes while enabling continuous efficient operations and future implementation of new technologies.¹

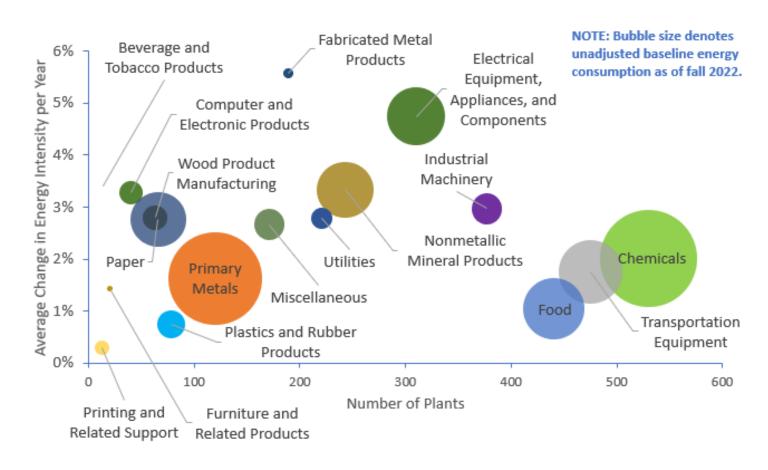


1 Price, C.R.; Nimbalkar, S.U.; Thirumaran, K.; Cresko, J. Smart Manufacturing Pathways for Industrial Decarbonization and Thermal Process Intensification. Smart Sustain. Manuf. Syst. 2023, 7, 41–53.

2 U.S. Department of Energy Advanced Manufacturing Office, Thermal Process Intensification: Transforming the Way Industry Uses Thermal Process Energy, May 2022, https://www.energy.gov/eere/amo/articles/thermal-process-intensificationtransforming-way-industry-uses-thermal-process

Pathways toward a smart (S), intensified (I), and decarbonized (D) system from the baseload (left) case

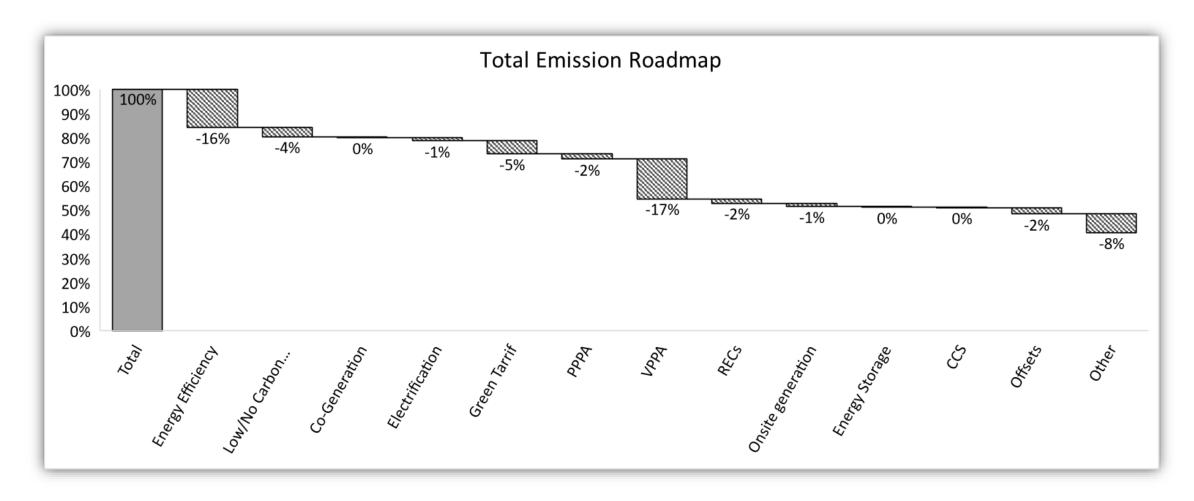
Implementation of SM in the manufacturing sector can enhance the performance of existing systems, improve equipment lifespan, reduce waste, and increase production yields



Overall Impact of the Energy Efficiency Pillar – Results from DOE's Better Plants Partners

- Through the program, DOE supports 270+ partners (~3600 facilities), corresponding to 14% of the U.S. manufacturing footprint.
- Since 2010, these partners have reported savings of 2.2 QBtu of energy and \$10.6 billion. This is equivalent to 131 MMT of CO2 emissions reductions⁽¹⁾.

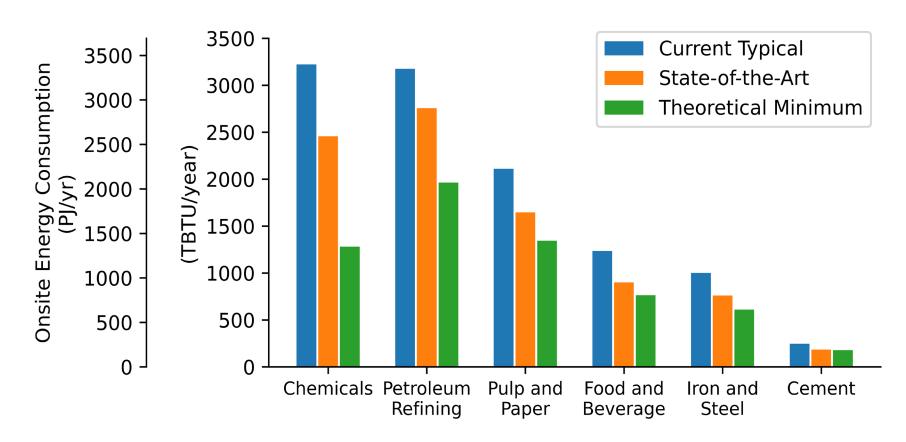
Average energy intensity improvement in terms of no. of plants and program energy footprint for selected sectors⁽²⁾



⁽¹⁾ Better Plants 2022 Progress Update:: https://betterbuildingssolutioncenter.energy.gov/resources/2022-betterplants-progress-update

⁽²⁾ Sundaramoorthy, S.; Kamath, D.; Nimbalkar, S.; Price, C.; Wenning, T.; Cresko, J. Energy Efficiency as a Foundational Technology Pillar for Industrial Decarbonization. Sustainability 2023, 15, 9487.

Lessons Learned from DOE's Low Carbon Pilot



This roadmap shows the pathways DOE's LCP partners are planning on undertaking for their 2030 or 2050 goal for their total GHG reduction

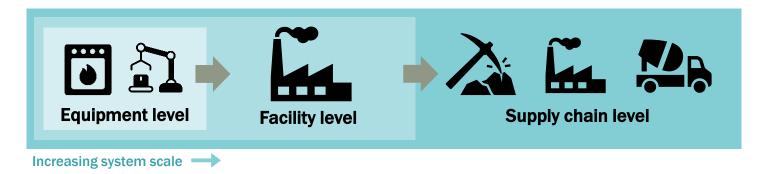
Energy Use of Select Energy and Carbon-Intensive Industries

 Energy efficiency technology pillar can achieve a significant reduction in energy consumption and corresponding energy-related CO2 emissions by reducing current typical energy intensities to state-of-the-art energy intensities.

Summary of Select Studies on the Industrial Decarbonization through Energy Efficiency

Reference	Origin	Baseline Year	Target Year	Energy Savings	Emissions Reduction by Energy Efficiency Pillar	Savings Type	Sector	Pillars/Pathways Addressed
Nadel and Ungar, 2019	United States	2019	2050	6.25 quads (6.6 EJ)	244 MMT	Energy use/CO ₂ emissions	Industrial	Energy efficiency
WSP et al., 2015	United Kingdom	2012	2050	_	23–59 MMT	CO_2 emissions	Industrial (energy- intensive)	Multiple pillars; energy efficiency contributing 12.8– 23% reduction
ClimateWorks Australia, 2014	Australia	2010	2050	40%	_	Energy intensity	Industrial	Energy efficiency
European Commission, 2018	Europe	2015	2050	25%	259 MMT ${\rm CO_2e}$ (53% from baseline)	Energy use/CO ₂ emissions	Industrial	Energy efficiency
Hasanbeigi et al., 2019	United States	2040 Business as usual	2040 advanced technology deployment	_	0.54 MMT CO ₂ per year (5% from baseline)	CO ₂ emissions	Cement	WHR to power and other emerging technologies and measures
McKane and Hasanbeigi, 2010, 2011	United States, Canada, European Union, Thailand, Vietnam, and Brazil	2008	_	173–234 TWh/year (28% to 38%)	_	Energy use	Industrial	Motor systems (pumping, compressed air, and fans)
Whitlock et al., 2020	United States		2050	_	15% from baseline	CO ₂ emissions	Industrial	Multiple pillars considered
de Pee et al., 2018a	Global	2014	2050	_	15–20% from baseline	CO ₂ emissions	Industrial	Multiple pillars considered

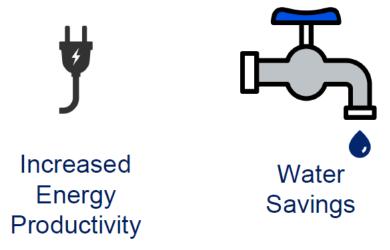
Specific Strategies for the Six Energy-Intensive Industries


Energy Efficiency Pillar	Iron and Steel	Chemical	Food and Beverage	Petroleum Refining	Pulp and Paper	Cement					
Strategic energy management	Commitment, identification, and implementation of energy efficiency projects, tracking energy and carbon efficiency performance, ISO 50,001, and energy management information systems										
System efficiency	Process heating, compressed air, pumps, and fans	Steam, process heating and cooling, compressed air, pumps, and fans	Steam, process heating and cooling, compressed air, pumps, fans, non- thermal drying, and dewatering	Steam, process heating and cooling, compressed air, pumps, and fans	Steam, process heating and cooling, compressed air, pumps, fans, efficient dispersers, refiners, and grinders	Process heating, compressed air, pumps, and fans; efficient grinding technologies (e.g., high- pressure grinding rolls, vertical roller mills in place of ball mills					
Materials and life cycle efficiency	Top pressure recovery turbine, coke dry quenching, BOF gas recovery, improving semimanufacturing yields, scrap reduction of end-use goods by improved manufacturing techniques (e.g., AM)	Energy, system, and material efficiency (e.g., recycling and waste minimization)	Food waste reduction	Desulfurization using clean hydrogen; efficient use of low-carbon energy sources	Innovative drying techniques, increased use of recycled pulp, biogas production from effluent, and black liquor gasification	High-efficiency clinker cooling and grinding; innovative chemistry (blended cement and low-carbon binders), and clinker substitutes (fly ash, ground granulated BF slag, etc.) wastes (oils and solvents) as alternative fuels in kilns					
Smart manufacturing	Shortened smelting time and enhanced smelting efficiency using automated detection of molten steel components, blowing controls, and component analysis; digital twin	Smart manufacturing using data mining and modeling to develop dynamic target values for energy consumption; digital twin	Automation and smart manufacturing (soft or virtual software sensors to augment physical data points and enable control of nonstandard process variables), and precise measurement/control of steam energy; digital twin	Digital twin	Automation and smart manufacturing, such as cleaner automation; digital twin	Upgraded cement process controls to lower firing temperatures and times; digital twin					
Combined heat and power	Waste heat management (reduce, recover, and recycle)	Combined heat and power; waste heat to power	Waste heat recovery	Waste heat recovery	Waste heat recovery; combined heat and power						

Source: Sundaramoorthy, S.; Kamath, D.; Nimbalkar, S.; Price, C.; Wenning, T.; Cresko, J. Energy Efficiency as a Foundational Technology Pillar for Industrial Decarbonization. Sustainability 2023, 15, 9487.

RD&D Needs for Energy Efficiency

- To improve the efficiency of process heating, steam, and motor systems the largest end-uses of energy in the industrial sector.
- Smart manufacturing and advanced data analytics to unlock energy efficiency
 opportunities at every level of system integration: equipment, facility, and supply chain.



- Research to address big data challenges related to data quality, storage, and computing; advanced analytical tools are needed to process the data and improve cybersecurity.
- Demonstrations of plant automation systems that provide real-time energy performance data.
- Data integration to facilitate utility efficiency programs that reward manufacturers for energy saved rather than equipment installed.

DOE's Better Plants Program

- The Better Plants Program partners with leading manufacturers and water utilities to improve energy efficiency and competitiveness in the industrial sector, saving money in the process.
 - Through Better Plants, partners voluntarily set a specific goal, typically to reduce energy intensity by **25% over a 10-year period** across all their U.S. operations.

All Better Plants Partners

Better Climate Challenge

Portfolio-wide reduction in GHG emissions of at least 50% in 10 years

- Reduction includes Scope 1 & 2 emissions
- RECs allowed; No offsets
- Baseline up to 5-years back from join date
- Encouraged to establish an absolute target, but intensity-based targets will be accepted
- Pursue an energy efficiency target that will contribute towards the 50% emissions reduction. This target is intended to encourage prioritizing energy efficiency when pursuing a decarbonization plan.
- Goals less than 50% will be considered for energy-intensive sectors

Better Climate Challenge – Industrial Partners

Stanley Black & Decker

COLGATE-PALMOLIVE

O Tarkett

Why Companies Join Better Plants or Better Climate Challenge

Industry Leadership

Developing Innovative, Replicable Solutions with Market Leaders

- National Recognition
- Peer to Peer Networking
- Better Building Solutions Center

Technical Assistance Resources

Making Energy Efficient Investments Easier

- Tools for Energy & Carbon Management
- Financing Navigator
- Diagnostic Equipment Program

Emerging Technologies

Innovation to Drive Savings

- DOE National Labs
- Advanced Technology Field Validation

Workforce Development

Helping You Meet Your Challenges of Today, and Tomorrow

- In-Plant Trainings
- Fundamentals of Energy Management and Decarbonization Trainings
- Industrial Assessment Centers

Questions

Sachin Nimbalkar, PhD

Email: nimbalkarsu@ornl.gov

Phone: 865.576.3590

Energy Efficiency as a Foundational Technology Pillar

Energy efficiency is the foundational, cross-cutting decarbonization strategy—and remains the most cost-effective option for GHG reductions.

Pillar 1

97% of industrial sector CO_2 emissions (and 63% of GHG emissions overall) are associated with fossil fuel combustion for energy, with a majority attributed to process heating, steam, and motor-driven systems.

Process Heating and Steam

42% of industrial combustion

emissions

Motor-Driven Systems

28% of industrial combustion emissions

Process Cooling

4% of industrial combustion emissions

Electro-Chemical Processin

> 4% ndustria

of industrial combustion emissions

Other Process Uses

7% of industrial combustion emissions

Non-Process Uses

15% of industrial combustion emissions

Data sources: U.S. EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019; DOE Manufacturing Energy and Carbon Footprint, based on EIA Manufacturing Energy Consumption Survey (MECS) data for 2014.

