Converting CO₂ and Water into Hydrocarbons

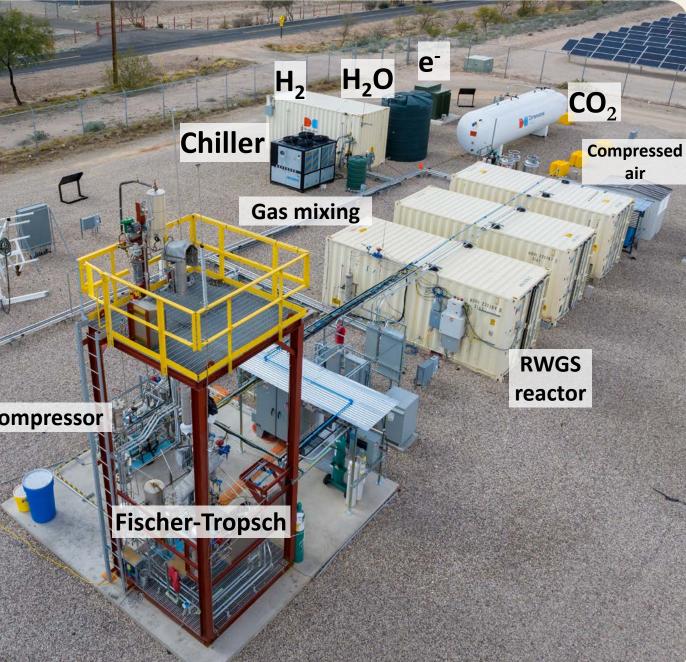
Brad Brennan, PhD

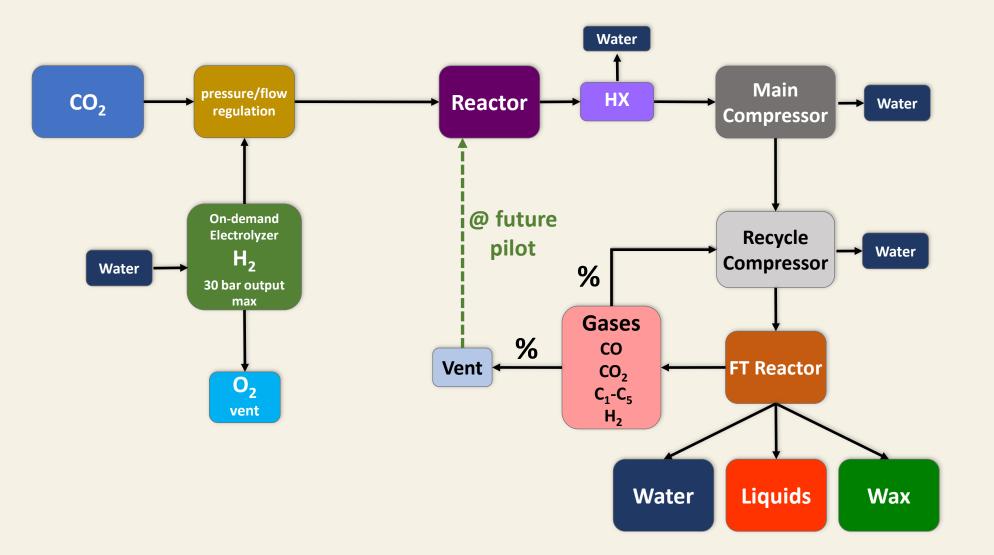
Chief Science Officer

NSF Workshop on Advanced Manufacturing for Industrial Decarbonization

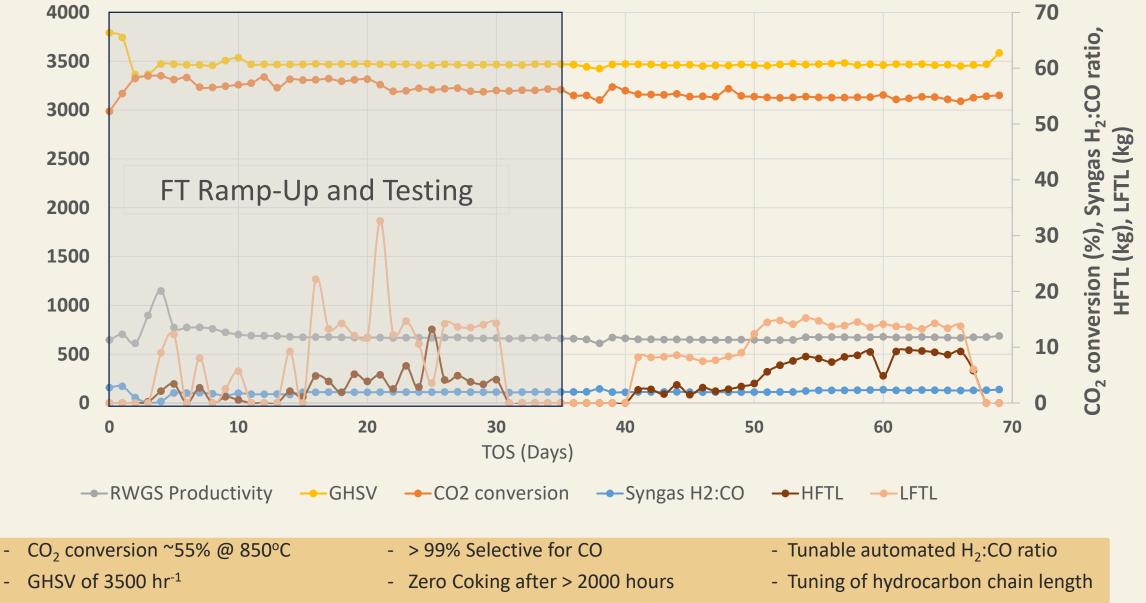
August 3rd, 2023

Dimensional Energy

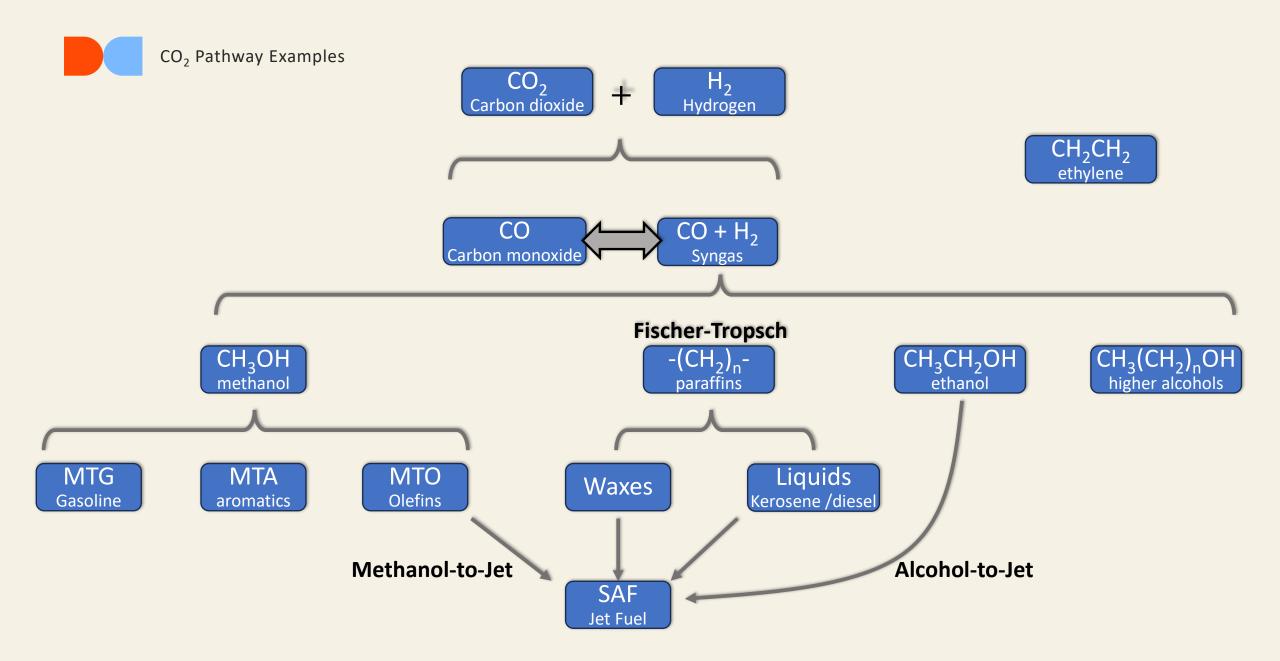

- Founded in 2016 as a Cornell University spinout
- Focus
 - o Reactors
 - o Catalysts
 - Advanced Materials
 - Integration
- Currently ~30 employees with ~50% as Scientists/Engineers
- Broadly interested in converting CO₂ into hydrocarbons
- Pilot Plant (2022) integrates CO_2 -to-hydrocarbons technologies $OO_2 \rightarrow 2H_2 + O_2$ $OO_2 + H_2 \leftarrow OO + H_2O$ $OO_2 + H_2 \leftarrow OO + H_2O$ $OO + H_2 \rightarrow -(CH_2)_n - + H_2O$ Fischer-Tropsch



- Sept 2022 start
- ~12 employees
- 24/7 operation
- > 5000 operating hours
- > 500 kg hydrocarbons so far

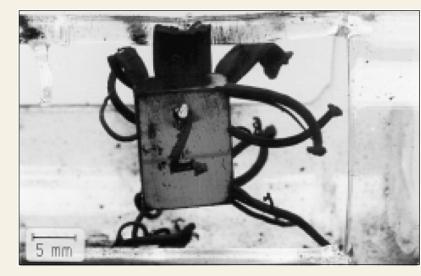


Fischer Tropsch Pilot Plant process flow



GHSV (h⁻¹), Productivity (SCFH/ft³)

2.4 85 Output Syngas Ratio (H₂ / CO) 0-0 2.2 80 Conversion (%) 0 0 2.0 75 1.8 70 65 O 1.6 ← 0-60 1.4 1.6 1.8 2.0 2.2 2.4 2.6 Input ratio (H_2 / CO_2) @ 950°C



Reactor Alloys

- Unwanted catalytic properties
- Required properties @temp/pressure

 Temperature constraints
 Phase Transitions
 Creep Strength
 - $\ensuremath{\circ}$ Thermal conductivity
- Hydrogen embrittlement
- Corrosion
 - o Hydrogen embrittlement
 - \circ Metal dusting
 - \circ Carbon formation
 - \circ steam

Important chemical reactions

• CO Reduction

Bosch Reaction

$$H_{2} + CO = C + H_{2}O$$

$$\left(\Delta H_{298}^{0} = -131.3 \text{ kJ/mol}; a_{C_{1}} = K_{1} \frac{P_{CO}P_{H_{2}}}{P_{H_{2}}}\right)$$

Boudouard

$$2CO = C + CO_2$$

$$\left(\Delta H_{298}^0 = -172.4 \text{ kJ/mol}; a_{C_2} = K_2 \frac{P_{CO}^2}{P_{CO_2}}\right)$$

• Carburization $M + C \rightarrow M_{23}C_6 / M_7C_3 / M_3C$ M=metal

• Dusting (iron) $3Fe + C \rightarrow Fe_3C \rightarrow 3Fe + C$

meta-stable decomposition

• Carbonyl formation $Ni + 4CO \leftrightarrow Ni(CO)_4$ $\Delta H^{\circ}_{298} = -147 \text{ kJ/mol}$

Fe + 5CO $\leftarrow \rightarrow$ Fe(CO)₅ $\Delta H^{\circ}_{298} = -116 \text{ kJ/mol}$

Thermal management is vital

- Production
 - o Electric
 - \circ Burning fuels
 - o Microwave
 - \circ Magnetic inductive
- Transport
 - o Steam
 - Thermal fluids

• Use

Power generation
Pre-heating / removing heat from chemicals
Reactors

- Storage
 - \circ Sensible heat
 - \circ Latent heat
 - \circ Thermochemical

Thermal integration is necessary for cost / efficiency

High temperatures and corrosion require new materials

Manufacturing heterogeneous catalysts is a technology-enabled art-form

Tableting

- 1. Prepare catalyst via precipitation, etc
- 2. Mix all components together as powder
 - ie. Catalyst, binders, support
- 3. Compression into die @specific pressure to form pellet
- 4. Heat treatment

Alternative routes

- 3D printing
- Sol gel
- CVD / PVD / Sputtering / Plasma

Extrusion

- 1. Mix support, binder, and lubricants as powder
- 2. Extrude through die @specific pressure/temp
- 3. Heat treat support @specific temp
- 4. Impregnate catalyst materials
- 5. Active catalyst prep steps

Heterogeneous Catalyst Issues

Manufacturing

- Preparation
 - o Impurities
 - Phase (bulk and surface)
 - \circ Dopants
 - \circ Effects of Recipe
- Materials specs
 - Sufficient strength
 - o Pressure buildup
 - Adequate pore sizes

Operation

- Reaction selectivity (and change over time)
- Corrosion

 Attrition / mechanical degradation
 Loss of materials (gaseous decomposition)

• Degradation

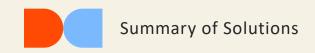
 \odot Sintering / loss of active sites or surface area

- \circ Chemical phase change
- \circ Coking
- Chemical deactivations
 - Carbides
 - Carbonyls
 - Reacting with catalyst support

Heat Exchangers

• Uses

Feed / Effluent
Effluent / Steam
Steam / Feed
Water cooled
Solid / Gas



Issues

- Operational temperature ranges (differentials)
- o Temperature limits
 - Materials and assembly connections
- \circ High Pressure limits
- Corrosion / Fouling

- Solutions
 - New Materials (ceramics require new methods)
 - New manufacturing methods
 - \circ Coatings

https://www.energydais.com/titan-metal-fabricators/shell-and-tube-heat-exchangers-9270 http://www.fbmhudson.com/shelltube-heat-exchangers/



Some Solutions

- Materials choice
 - \circ Doping
 - \circ Composites
 - o Specific phase
 - \circ Modified material
 - \circ Coatings
- Method of making material / system
 - \circ Modified conventional
 - \circ Exotic
 - o 3D printing
- New process schemes
 - o Chemical routes
 - \circ Reactor designs

Assumptions of Power-to-X system using *Fischer Tropsch*

- \$0.04-\$0.05 / kWh electricity
- \$60-\$100 / ton CO₂
- \$400-\$600 / kW electrolyzer
- 20 yr project life
- 1,000 barrel/day (42,000 gal/day) = \$4.25 / gal SAF
- 10,000 barrel/day (420,000 gal/day) = \$3.48 / gal SAF
 - o \$0.035 / kWh
 - $_{\odot}$ \$50 / ton CO $_{2}$
 - o \$200 / kW electrolyzer
 - \circ No subsidies

Thank You and our funders

Feel free to contact me Brad@dimensionalenergy.com