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Summary

For cost-optimal utilization of battery electric delivery vans, energy consumption prediction is important.
This paper presents a microscopic energy consumption tool, which requires the intended route as input.
Both the velocity profile prediction algorithm and the subsequent energy consumption model are based
on data obtained from dedicated vehicle tests. Secondly, up-to-date environmental data on the weather,
the road slope profile, and local speed legislation are obtained through API’s via the internet. The results
show good correspondence with the measured energy consumption. Validation with several measured
trips shows that the energy consumption is predicted with an error that rarely exceeds 10 %.

Keywords: BEV (battery electric vehicle), energy consumption, medium-duty, van, efficiency.

1 Introduction
Motivated by the increasing awareness of global warming, the cargo transport sector is making a tran-
sition towards electric mobility. One example of such an electric vehicle is the Voltia eVan. The Voltia
eVan is a fully electric delivery van with a swappable traction battery. Converted from a Citroën Jumper,
the vehicle keeps all functional, safety, and driver-comfort features of the donor vehicle, while enhancing
its driving characteristics thanks to the 160 kW (peak) electric motor. The capacity of the traction battery
can vary between 40 and 90 kWh per vehicle. The Voltia eVan is also used as the carrier vehicle of a
demonstrative batterypack with novel battery management system (BMS) features, which is developed
within the scope of the H2020 project EVERLASTING [1].
Despite the battery capacity options and battery swapping capabilities, an accurate energy consumption
prediction tool is essential for efficient utilization of these vehicles. An example of such a prediction
methodology can be found in [2], where extensive fleet data is used to predict the energy consumption
of electric taxi’s. However, in case no large amount of fleet data is available, for instance before initial
vehicle deployment, other methods are required to make accurate predictions.
In this paper, a microscopic energy consumption prediction tool for the Voltia eVan is presented. The tool
consists of two parts: a velocity profile prediction (VPP) algorithm and an energy consumption prediction
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Figure 1: The Voltia eVan.

(ECP) model. Both parts follow a physics-based approach in order to provide reliable extrapolation to
unknown geographic regions and operating conditions. The models rely on up-to-date weather, road, and
elevation data. The tool [3], developed in MATLAB, is connected via API’s to OpenWeatherMap [4],
OpenStreetMap [5], and the SRTM elevation map [6], respectively, to obtain these data.
The outline of this paper is as follows. In Section 2 the model and methods underlying the prediction are
explained. In Section 3 the results of the energy consumption prediction tool are presented and compared
to measurements. In Section 4 the results are discussed and the conclusions are presented in Section 5.

2 Methodology

2.1 Model
The energy consumption of the vehicle is modeled using a physics-based approach, i.e. by modeling the
longitudinal dynamics of the vehicle, as shown in Figure 2. By applying Newton’s second law we can
write

meff
dv

dt
= Fdrive − Froll,1 − Froll,2 − Faero − Fgrav . (1)

In this equation, meff is the effective mass, which also includes rotational inertia of the wheels and
driveline and v is the vehicle velocity as function of time t. Furthermore, Fdrive, Faero, Froll and Fgrav
represent the driving force, aerodynamic drag force, total rolling resistance force, and longitudinal grav-
ity component, respectively.
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Figure 2: Schematic side-view of the Voltia eVan with all longitudinal forces indicated by arrows.
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By modeling each of these forces, the power required by the powertrain Ppt can be calculated as [7]

Ppt =

(
meff

dv

dt
+ frmg cos(α) +

1

2
ρCdAf v

2
wind,rel +mg sin(α)

)
v + Ploss(ωwheel, Twheel) . (2)

This expression is first of all a function of the vehicle velocity v. Secondly, there are several vehicle
parameters, such as vehicle mass m, rolling resistance coefficient fr, aerodynamic drag coefficient Cd,
frontal area Af , and powertrain losses Ploss as function of wheel speed ωwheel and wheel torque Twheel.
Lastly, also several environmental conditions are required, such as the gravitational acceleration g, the air
density ρ, the local road slope α, and the relative wind velocity vwind,rel. The total energy consumption
Etot for a trip can be calculated by adding the auxiliary power Paux and integrating over the trip time:

Etot =

∫ tend

t0

(Ppt + Paux) dt . (3)

While the physics of the methodology is captured by (2) and (3) alone, the challenge lies in the accurate
determination of all these vehicle and environmental parameters.

2.2 Identification of Vehicle Parameters
The model requires knowledge of several vehicle-specific parameters. Because it is generally difficult to
determine these coefficients based on physical modelling alone, dedicated vehicle tests are performed.

2.2.1 Rolling Resistance and Aerodynamic Drag

Coast-down tests are performed to determine both the rolling resistance coefficient and the aerodynamic
drag coefficient. During such a coast-down test, the vehicle is accelerated to a certain velocity, after
which the propulsion power is removed, e.g. Ppt = 0, causing the vehicle to decelerate. By conducting
this experiment on a level surface during low-wind conditions (2) reduces to

meff
dv

dt
+ frmg +

1

2
ρCdAfv

2 = 0 . (4)

Therefore, measurement of the velocity v and its time derivative dv/dt during deceleration yields enough
information to estimate both fr and Cd, as described in [8]. Because the rolling resistance coefficient
will also vary as function of road surface, the tests are repeated for different road surfaces; good asphalt,
medium quality asphalt, and bad asphalt. Approximately 10 coast-down maneuvers are performed on
each road surface type.
The results are displayed in Table 1 and show that the rolling resistance coefficient fr ranges between
0.0088 and 0.0112 and increases for decreasing road quality. This road surface quality dependency is
also taken into account in the energy consumption prediction. The simulation value for fr is considered a
piecewise constant function of vehicle velocity, as indicated in the last column of Table 1. The underlying
assumption is that the road quality is generally better on high-velocity roads, such as highways.

Table 1: Measured average rolling resistance coefficient fr for different road surfaces together with the applicable
velocity range for usage of the value in the energy consumption prediction model.

Road surface quality Average measured fr [-] Prediction velocity range [km/h]
Good asphalt 0.0088 >80

Medium asphalt 0.0092 30-80
Bad asphalt 0.0112 0-30

The aerodynamic drag coefficient is also a result of the coast-down tests. Because in theory the Cd of the
vehicle does not change as function of road surface, the results of all the coast-down tests are averaged
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resulting in a Cd value of 0.36. As will be explained in Section 6, information about the apparent wind
yaw angle β may be available. In that case, the aerodynamic drag coefficient is considered to increase
due to crosswind effects and can be calculated by

Cd = 0.36 + ∆Cd (β) . (5)

Here, the increase in drag coefficient ∆Cd is a function of headwind yaw angle β. Because only little
research is available on the cross-wind aerodynamics of medium-duty vehicles, such as the Voltia eVan,
∆Cd is assumed to be roughly similar as for a large Multi Purpose Vehicle (MPV), as is described in [9].
Therefore, ∆Cd (β) is considered a piecewise linear function shown in Figure 3 and is assumed to be
constant for |β| > 10 deg.
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Figure 3: Increase in aerodynamic drag coefficient as function of headwind yaw angle.

Lastly, the vehicle mass is determined by weighing the empty vehicle and adding the mass of the cargo
and drivers, resulting in m = 2800 kg. Additionally, the effective mass is calculated based on the known
inertia of the tires and motor rotor, resulting in meff = 2880 kg.

2.2.2 Powertrain Losses and Regenerative Braking

The powertrain loss Ploss is difficult to determine based on physical modeling. This term represents all
the power lost between the vehicle’s traction battery and the wheels, and includes both electrical losses in
the inverter and motor, as well as mechanical losses in the gearbox, bearings, and driveshafts. Therefore,
the choice is made to measure the lumped powertrain losses using vehicle tests.

Figure 4: Schematic view of the Voltia eVan placed on the TU/e Heavy Duty Chassis Dynamometer.

The TU/e Heavy Duty Chassis Dynamometer, displayed in Figure 4, allows for the measurement of the
mechanical power output at the driven wheels of the vehicle Pwheel. Simultaneously, the electrical power
PDC at the DC-side of the vehicle’s powertrain inverter is measured. This way, the powertrain losses can
be determined as

Ploss = PDC − Pwheel . (6)
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By operating the vehicle in steady-state at several combinations of velocities and torques, the powertrain
loss is mapped for the entire operating range of the powertrain. The results are visualised as efficiency
values in Figure 5a, and represent the efficiency of the inverter, motor, gearbox, and axle combined. The
efficiency is calculated separately for the driving situation ηdrv and the regenerative braking situation
ηbrk:

ηdrv =
Pwheel

Pwheel + Ploss
ηbrk =

|Pwheel| − Ploss

|Pwheel|
. (7)

The measured powertrain losses are implemented in the energy consumption prediction algorithm as
Ploss in (2) and are considered to vary as function of wheel angular velocity ωwheel and wheel torque
Twheel.
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(b) Maximum regenerative braking force.

Figure 5: Results of the TU/e Heavy Duty Chassis Dynamometer tests.

Furthermore, coast-down experiments are conducted on the dynamometer with the goal of identifying the
regenerative braking characteristics of the vehicle. The moment of inertia of the dynamometer is known,
thus the braking force exerted by the vehicle on the drum can be determined during such a coast-down
test. The results are displayed in Figure 5b and show a regenerative braking force that is approximately
constant, except at lower velocities. In the energy consumption prediction model this force is modeled
by a piecewise linear function, also indicated in Figure 5b. During normal operation of the vehicle the
applied braking force up until this piecewise linear function is assumed to be regenerative. Any additional
braking force exceeding this limit is applied using the hydraulic friction brakes and is therefore excluded
from the regenerative braking gain. Lastly, the auxiliary power is considered to be constant based on
measurements, resulting in Paux = 650 W.

2.3 Identification of Environmental Parameters
The longitudinal dynamics model in (2) requires knowledge of several environmental parameters. While
some of these parameters are universal constants, such as the gravitational acceleration g = 9.81 m/s2,
others might vary as function of location and/or time. Therefore, relevant information is obtained for an
arbitrary route through use of online Application Programming Interfaces (API’s).

2.3.1 Road Slope

The local road slope α is determined from the SRTM elevation database [6]. By making use of the
readhgt toolbox [10] relevant sections of the digital elevation map are downloaded and queried. The
resulting elevation, as function of travelled distance, is filtered by a 3rd order Butterworth low-pass filter
with cut-off spatial frequency λc = 1/2000 1

m , and differentiated numerically to obtain the local road
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gradient α, see Figure 6. This specific λc indicates that all features smaller than approximately 2 km are
filtered out of the elevation profile. This step is essential, as otherwise short wave length variations in
the elevation map will result in unrealistic road gradients, which can severely impact the accuracy of the
energy consumption prediction.
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Figure 6: Elevation and gradient for one of the driven routes with the Voltia eVan.

2.3.2 Weather Data

The energy consumption prediction algorithm takes up-to-date weather information into account. To this
end, temperature T , air pressure pa, wind magnitude, and wind direction are obtained from OpenWeath-
erMap [4]. The temperature and air pressure are used to calculate the air density ρ(T, pa) [11].

North

~vV

β
~vA

fw~vW

vwind,rel

Figure 7: Top view of the Voltia eVan with the vehicle velocity vector ~vV , the scaled wind velocity vector fw~vW ,
the apparent wind vector ~vA and the relative longitudinal wind velocity vwind,rel.

The wind magnitude and direction are represented by the vector ~vW , which indicates the direction the
wind is blowing towards with respect to the north. This vector is used together with the vehicle velocity
vector ~vV , whose direction is calculated from the vehicle heading, to determine the apparent wind vector
~vA

~vA = fw~vW − ~vV , (8)

which is also depicted in Figure 7. Practise shows that it is beneficial for the energy consumption pre-
diction to scale the wind magnitude by choosing the constant factor fw < 1. This factor is also used to
compensate for the fact that the obtained wind magnitude is specified at an altitude of 10 m above the
road surface instead of 1 m, where the vehicle drives. To compensate for this altitude difference an fw
of approximately 0.28 is expected [12, p. 56]. For the result presented here, fw = 0.2 was used, because
it results in the most accurate predictions for the analysed trips. The reason is that fw < 0.28 is that
the vehicle rarely drives in an open field where it is subject to the full influence of the wind. More often
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the vehicle is sheltered from the wind by road-side structures, trees, or buildings. As last step, the ap-
parent wind direction β is calculated, which is used to determine ∆Cd(β) as described in Section 2.2.1.
Furthermore, β is used to calculate the relative longitudinal wind direction vwind,rel

vwind,rel = |~vA| cos(β) , (9)

which is used in (2).

2.4 Prediction of the Velocity Profile
The expression in (2) also requires knowledge of the velocity profile of the vehicle. A velocity predicting
algorithm is developed, based on [7], that requires GPS coordinates of an intended route as input.
By use of the OpenStreetMap Functions toolbox [13], the algorithm queries relevant road infor-
mation from OpenStreetMap [5]. This includes the local speed legislation and traffic sign locations. The
information is visualised in Figure 8 for the route that will also be discussed in Section 3.
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Figure 8: Legislated maximum velocity and traffic sign location according to OpenStreetMap.

In the first step of the velocity profile prediction, the local speed legislation is considered to dictate the
maximum velocity along the route. Next, further velocity constraining locations are identified. These
include traffic light locations and corners. The vehicle is assumed to make a full stop at every encountered
traffic light. The reduced velocity in a corner is a function of the corner curvature calculated using the
GPS-points and an assumed maximum lateral acceleration of 2 m/s2. The result is a profile dictating the
upper-bound of the velocity vmax as function of travelled distance s, which is discretized as

s = [s1, s2, ..., si, ..., sN ] for i = 1, 2, ..., N , (10)

where N is the total number of coordinates along the route.
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Figure 9: Detail of the determined velocity constraining locations and the resulting predicted velocity profile.
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The final velocity profile is determined by including a limited vehicle acceleration and deceleration. Be-
cause these limits are mainly dictated by the driver, they are referred to as the driver model. The preferred
cruising velocity is also assumed to be driver specific and is calculated as factor of the legislated maxi-
mum velocity. The three driver specific parameters; acceleration, deceleration, and cruising velocity, are
tuned based on recorded data to represent the average driving behavior of a particular driver, as shown in
Figure 10a.
In order to include the acceleration limit, numerical time integration is performed in between each of the
points of the distance grid s, while also taking the upper-bound of the velocity vmax into account:

v(si+1) = min

(∫ t(si+1)

t(si)
ax,lim(v)dt+ v(si) , vmax(si+1)

)
for i = 1, 2, ..., N − 1 , (11)

where ax,lim is the acceleration limit, displayed in Figure 10a. This procedure is performed once in
forward direction, as shown in (11), and once in backward direction, to include the deceleration limit.
Using the now known velocity, the velocity profile as function of distance is interpolated to a time grid.
The resulting velocity profile Figure 10b shows a fair correspondence with a measured velocity profile.
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Figure 10: Driver model that is used as input for the velocity profile prediction (a) and the resulting predicted
velocity profile (b), both compared to measured data (black).

The prediction algorithm contains multiple assumptions, such as the completely deterministic driver
model, and the fact that the vehicle stops at every traffic light. Even though not all realistic details
are represented, the resulting velocity profile is accurate enough for the goal of energy consumption
prediction.

3 Energy Consumption Prediction Results
Having knowledge about the velocity profile and the vehicle and environmental parameters, the energy
consumption can be predicted for a given route. To this end, the velocity profile is first predicted, as
described in Section 2.4. The predicted velocity profile v(t) is then used as input for (2) and (3), together
with all the parameters described in Section 2.2 and 2.3.
In order to validate both parts of the model, a comparison with measured data is made. A 33.9 km route is
used as input. Data for the same route are also displayed in Figures 6, 8, 9, and 10. First of all, the energy
consumption model is validated by using the measured velocity, also shown in Figure 10b as input to (2)
and (3). The results, displayed in Figure 11a, show a good correlation between model and measurement,
except for a slight under-estimation of the regenerated energy.
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(a) Predicted energy based on measured velocity.
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(b) Predicted energy based on predicted velocity.

Figure 11: Predicted energy consumption compared to the measured energy consumption. In (a) the measured
velocity v(t) was used, whereas in (b) the predicted velocity profile was used.

Next, the same calculations are performed by taking the predicted velocity profile, shown in Figure 10b,
as input for the energy consumption model. The result is presented in Figure 12, which displays the power
described by each of the terms in (2) as function of time. Integrating and summing these powers, results
in the total energy displayed in Figure 11b. The result shows a correct estimation of the regenerated
energy and a slight over-estimation of the dissipated energy. Ultimately, the difference between the
measured and predicted energy consumption at the end of the trip is 4.3%.

Figure 12: Overview of the power lost due to each of the terms in (2).

The results of several trips are listed in Table 2. All trips are conducted in and around the city of
Eindhoven, the Netherlands. The longer distance trips, e.g. trip 1, 3 and 4, include highway driving.
All trips contain city driving. Based on five analysed trips with an average length of 17.6 km, the tool
is fairly accurate and stays mostly below 10 % with respect to the measured energy consumption. Trip
number 5 is an exception. Most probably, the rolling resistance coefficient described in Section 2.2.1 is
not in accordance with the real type of road along this short route.
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Table 2: Results of the energy consumption prediction tool for five different trips. Data from Trip 4 is detailed in
other figures throughout this paper.

Distance [km] Measured Energy [kWh] Predicted Energy [kWh] Error [%]
Trip 1 16.2 3.9 3.7 −5.3
Trip 2 6.8 1.5 1.4 −8.6
Trip 3 29.7 9.2 10.0 8.9
Trip 4 33.9 10.9 11.3 4.3
Trip 5 1.7 0.3 0.4 12.0

4 Discussion
In theory, the model includes the influence of road slope and wind in the energy consumption. However,
because the validation sets were recorded in the Netherlands during relatively low-wind conditions of
|~vW | ≤ 3 m/s, the model should still be validated for more extreme situations.
Analysis of the predicted trips also shows that traffic can have a significant influence on the velocity
profile and consequently on the energy consumption. Because at the time of writing, no free up-to-date
traffic data was available, this effect is not included in the tool. Nevertheless, including information
related to the traffic flow would probably increase the accuracy of the velocity profile and thus the energy
consumption prediction.
Furthermore, the energy consumption prediction depends on several tunable parameters, such as fw, λc
and the chosen acceleration limits that capture the driver behavior. These are typically tuned based on
measured data from an arbitrary route. Therefore, some vehicle data and knowledge related to the driver
behavior will always be beneficial to get a good prediction accuracy for future trips.

5 Conclusions
The microscopic energy consumption prediction tool can be used for any predetermined route and shows
a fair correspondence with the available measurements. For most of the analysed trips the deviation
between predicted and measured energy consumption stays below 10%.
During development of the tool, it was concluded that the most accurate results are obtained by only
partially taking the wind speed into account and that filtering the STRM elevation profile is important.
Validation of the tool with more extreme slope and weather conditions is considered future work. How-
ever, decent extrapolability is expected, based on the usage of a physical model and up-to-date map
data. The full MATLAB-code for the tool, including connection to the aforementioned API’s is freely
available in [3].
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