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Summary 

The authors estimated the potential revenue from an EV aggregation participating in the California Independent 

System Operator (CAISO) Proxy Demand Response (PDR) market through managed charging under a range of 

scenarios. Annual driving and charging profiles were developed for a sample of drivers using stochasic Markov-

Chain Monte Carlo (MCMC) techniques. Charging was then optimized against a forecasted PDR price stream to 

simulate an EV aggregators bidding EV battery capacity into the CAISO PDR market to earn revenues. Results 

illustrate a broad range of revenues could be realized, although, under a base case (i.e. an unmanaged charging 

baseline, medium-distance commuter, operating in the day-ahead market, with a 250 mile BEV) revenues at the 

workplace were on average only 8 $/EV-year and if participating in PDR at home, 31 $/EV-year. Under certain 

conditions this revenue could be as high as 237 $/EV-year but depends strongly on the commute distance, baseline 

charging profile, real-time or day-ahead market participation, and the level of charging at home. 

Keywords: Proxy Demand Response, Vehicle Grid Integration (VGI), electric vehicle supply equipment (EVSE), 

BEV (battery electric vehicle) 

1 Introduction 

Decarbonization of the transport sector is a crucial policy goal for many nations aiming to reduce Greenhouse 

Gas emissions. A rapid decline in the cost of Lithium-ion battery technology in recent years has made electrifying 

transport an attractive option for decarbonization and put electric vehicles (EVs) on a path to become the 

dominant form of road transport by 2050 [1]. Since a single EV can consume almost half as much energy annually 

as an entire home, EV adoption at such scale will have a significant impact on electricity grids. There is therefore 

a growing need to find smarter ways to manage EV charging load to minimize the burden on electric utilities and 

unlock the vast potential EVs could have in helping balance the grid. One approach is to shift the timing of EV 

charging in response to a price signal, known as smart charging, V1G, or managed charging.  
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The theoretical value that a managed charging service provides for utilities and the grid has been demonstrated 

in various studies using marginal cost value streams and different charging patterns [2, 3, 4]. However, many 

barriers need to be overcome before this theoretical value could be captured by vehicle drivers, EV charging 

aggregators, vehicle manufacturers, or other stakeholders needed to promote and deliver managed charging 

services. One such barrier is that few programs or products exist today that are accessible to an EV aggregation 

resource and from which viable business models can be created to incentivize managed charging. In addition, 

little is known about what revenues an EV aggregation might expect to see from real products and programs that 

are currently available and accessible. 

One potential product that could be accessible to EVs through managed charging is the California Independent 

System Operator (CAISO) Proxy Demand Response (PDR) program. The PDR product was developed by 

CAISO to increase participation of demand response resources in ISO Energy and Ancillary Service markets. 

The program allows demand response providers to bid load curtailment into day-ahead and real-time wholesale 

energy markets as well as day-ahead and real-time non-spin and spin markets [5]. 

A key challenge for EV aggregators wishing to participate in ISO markets through PDR is predicting how much 

EV battery capacity is available to participate on an hourly basis which in turn depends on driving behaviour, 

charging patterns, charging access and many other factors. Studies that have investigated how EV aggregators 

might optimize charging have generally focused more on the role of a scheduling coordinator dispatching an EV 

aggregation alongside other resources and have only a course representation of the behavioural dynamics of 

drivers [6, 7]. Some researchers provide a more stochastic representation of driving behaviour but do not combine 

this with a revenue analysis for EV aggregators [8]. This work attempts to capture behavioural diversity of driving 

in a rigorous way, investigate how it aligns with wholesale market prices, and then establish what impact this has 

on aggregator revenues. 

The main objective of this paper is to explore how an aggregation of managed EVs might participate in the 

wholesale real-time and day-ahead energy markets through PDR and we estimate the revenues that could be 

expected under such a scenario. A stochastic markov-chain monte carlo technique is used to generate driving 

schedules representative of the driving population to account for variation in driving behavior. These profiles are 

then used to simulate EV charging loads that are managed through a linear optimization tool. 

2 Methods 

The analysis involved three main steps, as outlined in Figure 1. First, driving profiles are created from 2017 

National Household Transportation Survey data [9] and the Markov-Chain Monte Carlo technique. The 

resulting driving profiles are then used to simulate EV driving and charging using E3’s load simulation tool, 

RESHAPE. Finally, charging sessions are managed by an EV aggregator using the RESTORE model which 

dispatches behind the meter distributed energy resources through linear optimization. The potential for 

participation of EVs in the PDR market both at home and at the workplace is investigated. 
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Figure 1: Method for estimating potential revenue from an EV participation in the California ISO Proxy Demand Response 

(PDR) market 

The methodology section first lays out the various scenarios that were selected for simulation and then describes 

the steps for generating driving profiles, generating charging sessions, and how charging was managed for the 

EV aggregation. 

2.1 Cases 

To identify the full range of potential revenue from an EV aggregation participating in the CAISO PDR market 

various cases were developed combining different parameters: 

• Vehicle types: 4 vehicle types were tested, a long- and short-range Battery Electric Vehicle (BEV) and a 

long and short-range Plug-in Hybrid Electric Vehicle (PHEV). 

• Commute distances: three samples of drivers were used to generate driving profiles: Drivers in the top 

50th percentile for commute distance, drivers in the bottom 50th percentile for commute distance and 

drivers from all commute distances. This gave driving profiles representing drivers with long, short, and 

medium commute distances.  

• Market product: The PDR market product gives participants access to CAISO’s wholesale energy 

markets to bid in as load curtailment. Another, yet to be released product known as PDR Load Shift 

Resource (PDR-LSR) is also explored, this product is the same as PDR but also allows participants to 

bid into the market as demand when wholesale energy prices are negative. 

• Market type: Real-time and day-ahead market price forecasts were developed to explore both markets 

for the PDR and PDR-LSR products 

• Baseline charging profiles: To participate in PDR through managed charging a baseline charging profile 

must first be established. During a PDR call event an EV stops charging when it is scheduled to charge. 

The load reduction from the baseline charging profile determines how much capacity can be bid into the 

market. Two different baselines were explored; an unmanaged charging baseline where vehicles charge 

to their full state of charge immediately on arrival at a location with access to charging, and a Time of 

Use (TOU) tariff baseline in which charging is concentrated as much as possible outside of TOU peak 

hours.  

• Location: Simulations were carried out where EVs could participate in PDR when at home or at the 

workplace. 

Permutations of the above parameters formed the modelling cases for simulation with each case being modelled 

using a sample of 50 drivers over a year. The cases were simulated for 2020, 2023, and 2025 to understand how 
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revenues may evolve over time. The base case selected was a medium distance commuter, with a BEV that has 

250 miles of range, an unmanaged baseline charging profile, participating in the Day Ahead PDR market. 

2.2 Driving Trip Generation 

Annual driving patterns were generated for 50 drivers for each commute distance type (long, medium, and short). 

The National Household Travel Survey dataset was used to gather trip data on a large sample of Californian 

drivers. This dataset was filtered and cleaned to represent commuter drivers of personal light duty vehicles. The 

trip data was then converted to an annual driving profile using the Markov Chain Monte Carlo (MCMC) 

simulation method following the steps shown in Figure 2. 

 

Figure 2: MCMC method for simulating driving profiles 

The MCMC method defines five location states for the driving profile, including home, workplace, public place 

with access to chargers, public place without access to chargers, and driving/on the road. For each 15-min time 

window, a vehicle is tagged with a single state indicator. The probability of transitioning from one state to the 

other is calculated for every 15-minute window using the historical NHTS dataset. This forms a set of 

probabilities known as transition matrices for a weekday and a weekend. The state in each time window is 

stochastically generated through Monte-Carlo simulation to construct annual driving profiles. The initial state is 

randomly chosen based on the state distribution in the first-time window (e.g. 12:00 am of a weekday). The 

process is iterated many times to create a set of driving patterns that fully represent the driving behaviour of the 

entire population. For more detail on implementation of the MCMC methodology see [10, 11]. 

 

2.3 Charging session generation and managed charging simulations 

To generate charging sessions the annual driving profiles were input into E3’s RESHAPE load generation tool 

which segments the driving population based on charging access and vehicle type, generating normalized loads 

for each segment. Charging session metrics such as arrival time, departure time, energy consumed during session 

were then managed using the RESTORE dispatch optimization tool using the PDR price streams.  

To develop a market price forecast for the PDR and PDR-LSR market products in both real time and day ahead 

markets, E3 generated future wholesale energy market price forecasts in DA market for California using Energy 

Exemplar’s AURORA model and E3’s own projections of future generation mixes and electricity market 

dynamics. The volatility between California SP-15 and NP-15 DA market and RT market was captured from 

historical data and applied on top of DA price forecast to derive RT price.  

As described in CAISO documentation [12], PDR resources are only dispatched when the energy market prices 

are above the net-benefits threshold NBT price and are therefore zero in all hours below this. A forecast for the 
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NBT was generated based on E3’s gas price forecasts and historical NBT data. E3 assumes the EV aggregator 

bids into the PDR market at the NBT price. 

To manage charging the RESTORE model would simply shift charging to the lowest priced hours subject to 

various constraints. A target for the state of charge of the battery on departure is one key constraint that is set by 

the driver on arrival at site. This was set to 100% to be conservative and ensure minimal range anxiety is 

experienced by participants. If the vehicle was not present long enough for the vehicle to reach 100% SOC then 

no charge management could occur. Finally, for simplicity no constraint was added for charging infrastructure 

meaning that all EV’s at home and work always had a dedicated charger and did not have to share plugs. 

 

3 Results 

E3’s analysis found a very broad range of EV revenue potential from PDR and PDR-LSR with annual revenues 

ranging from 2 – 237 $/EV-year. Under the base case, the sample average revenue potential was $8/EV-year at 

the workplace and 31 $/EV-year at home across the 50 drivers in the sample. It was found that commute distance, 

the baseline charging profile, the level of home charging, and the market type (day-ahead vs real-time) all had a 

strong influence on revenue potential. While vehicle type (BEV or PHEV), vehicle range (provided it was above 

50 miles), and market product (PDR vs PDR-LSR) had limited or negligible impact on revenue. The revenues 

also did not vary much annually between 2020 and 2025. 

 

 

 

Figure 3: Distribution of revenue from the CAISO PDR product from workplace managed charging. Note each bar 

represents the mean annual revenue of the 50-driver sample. 

 

Poor alignment of PDR market prices with workplace charging hours and the lower volume of energy charged 

were the primary reasons for revenue at work being around 4 times less than revenue at home. Since energy 

market prices tend to peak in the late afternoon and are generally lower during morning and early afternoon there 

were much fewer opportunities for the EVs to be managed for PDR at work compared to home. The amount of 

energy charged at home also tends to be higher because workplace charging tends to only replenish commute 

driving whereas home charging is used to replenish other trips as well. This study assumed every vehicle at work 

Workplace revenue potential 
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had a dedicated charger plug but in reality, vehicles would likely have to share plugs which would limit the 

flexibility to manage charging and therefore further reduce revenues at work compared to home.  

A much wider distribution of revenues can be seen in for PDR participation at home as shown in Figure 4, where 

sample averages were as high as 237 $/EV-year for RT market participation with drivers that have an unmanaged 

baseline charging profile, a long commute, and level 2 charging at home. 

 

Figure 4: Distribution of revenue from the CAISO PDR product from managed charging at home. Note each bar represents 

the mean annual revenue of the 50-driver sample. 

 

Figure 3 and Figure 4 show the large difference between the day-ahead PDR market (green) and real-time PDR 

market (yellow) cases. Revenues were significantly higher if EVs were participating in the real-time market 

which is expected due to the much higher price volatility. Since RESTORE is a linear optimization tool with 

perfect foresight actual revenues obtainable from the RT market are expected to be lower however this simulation 

still provides a useful upper bound.  

The underlying charging pattern used to generate the baseline from which demand response is measured played 

a significant role in determining revenue. Using managed charging as a demand response resource means an EV 

can only make revenue in a particular hour if under the baseline scenario the EV is charging in that hour and can 

therefore stop charging to show a reduction in load. Unmanaged charging profiles resulted in PDR baselines that 

could unlock much higher revenue compared to if the EV was already varying its charging profile in response to 

TOU tariff peaks. This impact is much stronger at home than work because TOU peaks tend to also coincide with 

high price PDR hours. Under a TOU baseline charging tends to be shifted to low price PDR hours resulting in 

significant revenue loss. It should be noted that generally the TOU peak price differential was significantly larger 

than the PDR market price making it much more lucrative overall for EVs to focus on responding to TOU peaks 

than PDR market signals.  

Commute distance was found to influence revenue potential at work significantly and at home more moderately. 

Drivers with longer commutes have greater charging needs and therefore offer more energy shifting potential and 

higher PDR revenue potential. Work revenues are more sensitive to commute distance because the commute is 

the only driving that tends to be replenished by charging at work, whereas home charging is used to replenish 

non-commute trips as well. 

Finally, the distribution of revenue within the sample of 50 drivers was often broad with the highest annual 

revenue seen for a single driver being 308 $/EV-year suggesting the driving pattern also has a strong influence 

Home revenue potential 
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on revenue. However, the nature of the MCMC method used for this study makes it difficult to further segment 

the driver population based on driving pattern characteristics without explicitly generating driving profiles to 

target a particular characteristic. For example, drivers that show a pattern of arriving at work early or leaving 

work late might allow us to identify high value drivers based on these traits, but this is beyond the scope of this 

study. 

4 Conclusions 

Previous studies have shown that managed charging could offer a significant revenue opportunity from wholesale 

markets in California. This analysis took a much deeper look at the revenue opportunity using a currently 

available CAISO market product and analysed a range of parameters that vary across the EV driver population 

such as EV type, charging access, commute distance, and baseline charging behaviour. E3’s analysis demonstrates 

that for a medium commuter, driving a BEV with 250 miles of range, who is not on a Time-of-use tariff at work 

or home, and participates in the day-ahead PDR market, an average of $8/EV-year could be expected at the 

workplace and 31 $/EV-year at home. However, under the right conditions upper estimates for these values could 

be as high as 25 $/EV-year at work and 237 $/EV-year at home. Capturing the higher revenue estimates requires 

drivers not being on a TOU tariff at home or work, participating in the real-time PDR market, having a long 

commute to work, and having access to level 2 charging at home. Other products and programs such as utility 

demand response could provide much higher revenues and should be explored in future work to support business 

model development and foster the deployment of VGI technology.   
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