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A Short Self-Introduction

Research Area:
I Theory: reinforcement learning, control theory, game theory
I Applications: power systems, communication networks, mobile robotics
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My Experience in ML + Power Systems

RL for Power System Protection
[Wu et al, 2022], IEEE Open Access Journal of Power and Energy

Case study of Heavy-duty Vehicle Electrification
[El Helou et al, 2022], Advances in Applied Energy

RL for Distribution Systems Voltage Regulation
[El Helou, 2022], IEEE Open Access Journal of Power and Energy

Distributed Learning of Lyapunov Function 
for Microgrids [Jena et al, 2022], arXiv

Synthetic PMU Data 
Generation [Zheng et al , 2021], 
IEEE Open Access Journal of Power and 
Energy
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My Experience in Power Systems

I Sharing economy for energy systems [Kalathil et al, 2019, TSG], [Henriquez-Auba et al,
2021, Applied Energy]

I Mechanism design for demand response [Muthirayan et al, 2020, TSG] [Muthirayan et al,
2021 TSG]

I Learning for demand response [Kalathil et al, Allerton, 2017]
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ML in Power Systems

I There exists a number of works on using ML for carbon-neutral energy systems

I Can we use off-the-shelf ML algorithms for cyber-physical energy systems?
I My perspective as an RL researcher:
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Reinforcement Learning
I Reinforcement Learning (RL): how to learn the optimal sequence of actions in an unknown

and evolving environment to maximize the cumulative long-term reward

Learning Algorithm

Environment

Actions
Observations
Rewards
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Reinforcement Learning: Shining Successes

DQN for playing Atari game, 
DeepMind (2015)

AlphaGo for playing Go/Chess/Shogi, 
DeepMind (2017)

Robotic hand solving Rubik’s cube
OpenAI (2019)

Sensorimotor robotics,
UC Berkeley (2015) 

Chip placement design
Google (2020)

Recommendation Systems
Netflix (2022); 

Microsoft Vowpal Wabbit (2022) 
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Reinforcement Learning in the Real-World
I However, most RL success stories are limited to very structured or simulated environments

I Games, simple robotic settings
I The success stories of RL in real-world engineering systems are rare/limited

I What is holding up RL from emerging as the go-to solution for
the control of real-world engineering systems?

I RL algorithms are not resilient (lacks robustness, safety and adaptability guarantees!)

Robotic hand solving Rubik’s cube, OpenAI (2019)
Only 32% success!



8

Reinforcement Learning in the Real-World
I However, most RL success stories are limited to very structured or simulated environments

I Games, simple robotic settings
I The success stories of RL in real-world engineering systems are rare/limited
I What is holding up RL from emerging as the go-to solution for

the control of real-world engineering systems?

I RL algorithms are not resilient (lacks robustness, safety and adaptability guarantees!)

Robotic hand solving Rubik’s cube, OpenAI (2019)
Only 32% success!



8

Reinforcement Learning in the Real-World
I However, most RL success stories are limited to very structured or simulated environments

I Games, simple robotic settings
I The success stories of RL in real-world engineering systems are rare/limited
I What is holding up RL from emerging as the go-to solution for

the control of real-world engineering systems?
I RL algorithms are not resilient (lacks robustness, safety and adaptability guarantees!)

Robotic hand solving Rubik’s cube, OpenAI (2019)
Only 32% success!



8

Reinforcement Learning in the Real-World
I However, most RL success stories are limited to very structured or simulated environments

I Games, simple robotic settings
I The success stories of RL in real-world engineering systems are rare/limited
I What is holding up RL from emerging as the go-to solution for

the control of real-world engineering systems?
I RL algorithms are not resilient (lacks robustness, safety and adaptability guarantees!)
I Naively using ML/RL algorithms can lead to catastrophic failures!
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Why Do We Need Resilient RL?
simulation-to-reality (sim-to-real) gap

I RL algorithms typically learn a policy by training on a simulator
I However, the real-world systems parameters can be different from that of the simulator

I Due to the approximation errors incurred while modeling, changes in the real-world
parameters over time, adversarial disturbances in the real-world

I For example, in robotics, mass, friction, sensor noise, action delays etc. can be different
between the real-world system and the simulator (which represents the real-world system)

I RL algorithms trained on a simulator may perform poorly in the real-world systems due to
sim-to-real gap [Tobin, et al, 2017] (Panaganti and K., AISTATS, 2022)
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Three RL Challenges for Cyber-Physical Energy Systems

I Robustness: Algorithm must be robust against: the parameter mismatches between the
simulator model and real-world system system, adversarial disturbances in real-world
system, noisy or partial observation, adversarial attacks, . . .

I Preliminary studies from my group: [Xu et al, 2023, AISTATS] [Panaganti et al, 2022,
NeurIPS], [Panaganti et al, 2021, ICML]

I Safety: Algorithm should maintain the necessary safety constraints during learning and
deployment; algorithm should satisfy the stability criteria, . . .

I Preliminary studies from my group: [Bura et al, 2022, NeurIPS], [Liu et al, 2021, NeurIPS]

I Adaptability and Scalability: Algorithm should be able to rapidly adapt to new/changing
environments; should be able to scale to large-scale systems comprised of many interacting
subsystems; should be able to exploit the historical operational data and known models

I Preliminary studies from my group: [Rengarajan et al, 2022, NeurIPS] [Rengarajan et al,
2022, ICLR], [Jena et al, 2022, arXiv]

How do we develop scalable RL algorithms that are provably robust, safe and adaptive for
real-world cyber-physical engineering systems?
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