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A Short Self-Introduction

I am an assistant professor in the Department of Electrical and Computer
Engineering at Texas A&M University. My research is in the areas of
Reinforcement Learning and Control Theory, with applications in large
scale engineering systems such as power systems, communication
networks and mobile robotics. Before joining TAMU, I was a postdoctoral
researcher in the EECS department at University of California, Berkeley,
working with Prof. Pravin Varaiya and Prof. Kameshwar Poolla. I received
my PhD from University of Southern California (USC) in 2014, working with
Dileep Kalathil Prof. Rahul Jain.

ileep.kalathil [at] tamu.ec

I co-direct the Learning and Emerging Networked Systems (LENS)
Laboratory at TAMU.

Research Area:
» Theory: reinforcement learning, control theory, game theory

» Applications: power systems, communication networks, mobile robotics



My Experience in ML + Power Systems
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My Experience in Power Systems

» Sharing economy for energy systems [Kalathil et al, 2019, TSG], [Henriquez-Auba et al,
2021, Applied Energy]

» Mechanism design for demand response [Muthirayan et al, 2020, TSG] [Muthirayan et al,
2021 TSG]

» Learning for demand response [Kalathil et al, Allerton, 2017]



ML in Power Systems

» There exists a number of works on using ML for carbon-neutral energy systems
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» Can we use off-the-shelf ML algorithms for cyber-physical energy systems?
» My perspective as an RL researcher:



Reinforcement Learning

> Reinforcement Learning (RL): how to learn the optimal sequence of actions in an unknown
and evolving environment to maximize the cumulative long-term reward
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Reinforcement Learning: Shining Successes

SELF LEARINING ARTIFICIAL INTELLIGENCE

DQN for playing Atari game, AlphaGo for playing Go/Chess/Shogi, Sensorimotor robotics,
DeepMind (2015) DeepMind (2017) UC Berkeley (2015)
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Robotic hand solving Rubik’s cube Chip placement design Recommendation Systems
OpenAl (2019) Google (2020) Netflix (2022);
Microsoft Vowpal Wabbit (2022)




Reinforcement Learning in the Real-World

» However, most RL success stories are limited to very structured or simulated environments
» Games, simple robotic settings

> The success stories of RL in real-world engineering systems are rare/limited
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» What is holding up RL from emerging as the go-to solution for
the control of real-world engineering systems?

» RL algorithms are not resilient (lacks robustness, safety and adaptability guarantees!)

Robotic hand solving Rubik’s cube, OpenAl (2019)
Only 32% success!



Reinforcement Learning in the Real-World

» However, most RL success stories are limited to very structured or simulated environments
» Games, simple robotic settings
» The success stories of RL in real-world engineering systems are rare/limited
» What is holding up RL from emerging as the go-to solution for
the control of real-world engineering systems?
» RL algorithms are not resilient (lacks robustness, safety and adaptability guarantees!)
> Naively using ML/RL algorithms can lead to catastrophic failures!
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Why Do We Need Resilient RL?

simulation-to-reality (sim-to-real) gap
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» RL algorithms typically learn a policy by training on a simulator
» However, the real-world systems parameters can be different from that of the simulator
» Due to the approximation errors incurred while modeling, changes in the real-world
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> For example, in robotics, mass, friction, sensor noise, action delays etc. can be different
between the real-world system and the simulator (which represents the real-world system)
RL algorithms trained on a simulator may perform poorly in the real-world systems due to
sim-to-real gap [Tobin, et al, 2017] (Panaganti and K., AISTATS, 2022)
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Three RL Challenges for Cyber-Physical Energy Systems

» Robustness: Algorithm must be robust against: the parameter mismatches between the
simulator model and real-world system system, adversarial disturbances in real-world
system, noisy or partial observation, adversarial attacks, ...
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How do we develop scalable RL algorithms that are provably robust, safe and adaptive for

real-world cyber-physical engineering systems?
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