Physics Informed AI/ML for Power System Markets & Transients

Misha Chertkov (University of Arizona)

Two posters

Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study

Robert Ferrando¹, Laurent Pagnier¹, Robert Mieth², Zhirui Liang³, Yury Dvorkin^{3,4}, Daniel Bienstock⁵, and Michael Chertkov¹

¹GIDP in Applied Mathematics and Department of Mathematics, University of Arizona, Tucson, AZ, USA

²Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA

³Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA

⁴Ralph O'Connor Sustainable Energy Institute, Department of Civil and System Engineering, Johns Hopkins University, Baltimore, MD, USA

⁵Department of Industrial Engineering and Operations Research, Columbia University, New York, NY, USA

PIMA-AS-OPF Algorithm

We construct a physics-informed market-aware active set OPF algorithm to recover both the primal and dual solutions of DC-OPF as formulated above.

Sample Generation: Given load and wind profiles, generate samples based on expected wind volatility.

Learning: Input: residual load, load-based flows. Output: saturated lines and generators, shed loads, curtailed wind farms.

Economics: Compute LMPs at each bus, and validate the market design principles (e.g., revenue adequacy, cost recovery).

System of Linear Equations: Construct and solve the system of linear equations from the

constraints and KKT conditions.

Numerical Experiments

- Tests performed of New York Independent System Operator (NYISO) 1814-bus system.
- Six sampling configurations corresponding to different unit commitments.
- Four different levels of noise: $\sigma = 1\%, 5\%, 10\%, 15\%$ of associated wind profiles.

Case	Time	Wind	On	$P_{ m min}$	P_{\max}	$P_{ m sched}$
	Aug.28, 7am					
A7H	Aug.28, 7am	High	273	87.49	289.41	231.10
A17B	Aug.28, 5pm	Base	313	102.53	336.59	312.79
A17H	Aug.28, 5pm	High	313	102.53	336.59	312.79
F0B	Feb.13, 12am	Base	187	55.78	184.71	142.67
F0H	Feb.13, 12am	High	141	50.81	158.43	123.89

TOWARDS MODEL REDUCTION FOR POWER SYSTEM Transients with Physics-Informed PDE

THE UNIVERSITY
OF ARIZONA

Hes·so/// WALAIS

Laurent Pagnier¹, Julian Fritzsch², Philippe Jacquod² and Michael Chertkov¹

¹ Program in Applied Mathematics, University of Arizona, Tucson, United States.

$$m\ddot{ heta}_{
m sys} + d\,\dot{ heta}_{
m sys} = p_{
m gen} - p_{
m cons}$$

PDE (properly discretized) =>

$$m(\mathbf{r})\frac{\partial^{2}}{\partial t^{2}}\theta(t;\mathbf{r}) + d(\mathbf{r})\frac{\partial}{\partial t}\theta(t;\mathbf{r}) = p(t;\mathbf{r}) + \sum_{\alpha,\beta=1,2} \partial_{r_{\alpha}}b_{\alpha\beta}(\mathbf{r})\partial_{r_{\beta}}\theta(t;\mathbf{r}).$$

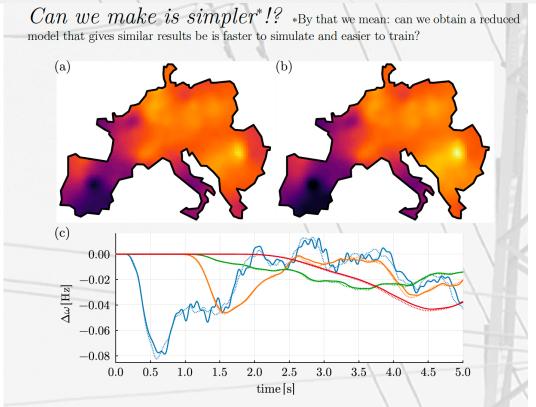


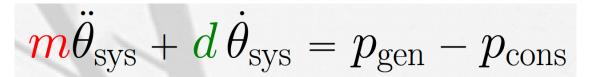
Fig. 5: Model reduction. (a) Stable state of the full PDE model. (b) Stable state of the reduced PDE model. (c) Comparison of their dynamic responses.

² School of Applied Sciences of Western Switzerland HES-SO, Sion, Switzerland.

TOWARDS MODEL REDUCTION FOR POWER SYSTEM TRANSIENTS WITH PHYSICS-INFORMED PDE

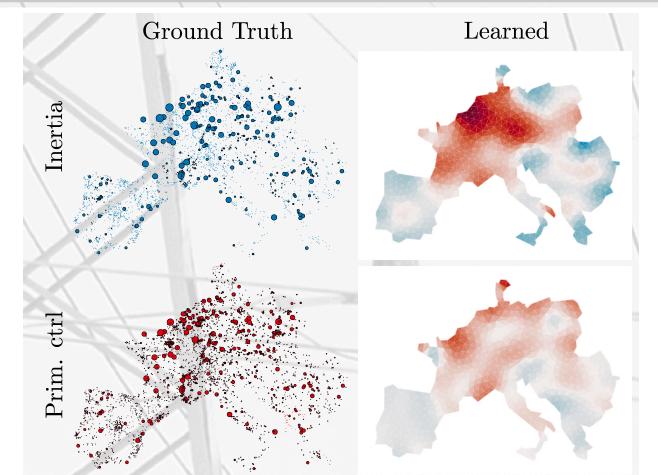
Laurent Pagnier¹, Julian Fritzsch², Philippe Jacquod² and Michael Chertkov¹

Hes·so WALAIS WALLIS



PDE (properly discretized) =>

$$m(\mathbf{r}) \frac{\partial^2}{\partial t^2} \theta(t; \mathbf{r}) + d(\mathbf{r}) \frac{\partial}{\partial t} \theta(t; \mathbf{r}) = p(t; \mathbf{r}) + \sum_{\alpha, \beta = 1, 2} \partial_{r_{\alpha}} b_{\alpha\beta}(\mathbf{r}) \partial_{r_{\beta}} \theta(t; \mathbf{r}).$$



¹ Program in Applied Mathematics, University of Arizona, Tucson, United States.

² School of Applied Sciences of Western Switzerland HES-SO, Sion, Switzerland.