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Every Year, The World Adds

51 Billion Tons of
Greenhouse Gases

the Atmospher



We need to get to zero

Every year, the world adds approximately 51 billion tons of greenhouse

gases to the atmosphere, trapping heat and driving up global
temperatures. The only way to avoid the worst impacts of climate change

Is to stop adding greenhouse gases by 2050.



Getting to Zero

Getting to net-zero will be an enormous challenge. It means transforming virtually every activity in
modern life and every major sector of the economy: electricity, agriculture, manufacturing,
transportation, and buildings. Yet we're optimistic that the world can rise to this challenge.

GETTING TO ZERO REQUIRES

> Understanding the problem

O

> Developing solutions

> Working together
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The Five Grand Challenges -




Electrification and Energy Demand till 2050
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How to Build a Future Energy System
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Breakthrough Energy

Sciences

Macro Grid Studies

A 2030 United States
 Meeting ambitious clean energy goals will require Mﬂcm G"d

Slgnlflc.an'F Increc.'slses n tran§m|SS|on. What should that Unlocking Geographical Diversity to Accomplish Clean Energy Goals
transmission buildout look like?

January
2021

« Four network designs, modeled after NREL Seams Study
« Design 1: AC transmission buildout only

« Design 2a: Increase HVDC back-to-back (B2B)
converters at ‘'seams’, plus AC transmission

« Design 2b: Increase HVDC B2Bs, plus three new HVDC
lines, plus AC transmission

* Design 3: Sixteen new HVDC lines, plus AC transmission




Macro Grid — Example Designs
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Macro Grid — Power flow In Design 3

« HVDC overlay and AC Transmission

upgrades 2030-11-01 19:00:00 CST
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Model Transportation Electrification to Understand Its Impact

Goal: Estimate on the road electric vehicle charging in the future
High resolution: all urban (481) and rural areas (48) hourly charging demand
Based on National Household Travel Survey trip data (half a million driving events)
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Approach: Model Vehicle Driving, Parking, and Charging Patterns
In Immediate Charging and Smart Charging Mode Using Real

World Trip Data Immediate Charging
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Transportation Electrification Could Bring Down the Grid If
Charging Not Managed Intelligently

Example of BEV Immediate Charging, 2035 Projection in One UA
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Net Demand (MW)

Smart Charging Takes Advantage of Cheap Renewable Energy and
Poses Minimal Stress on the Electric Grid

Example of BEV Smart Charging, 2035 Projection in One UA

Example of BEV Immediate Charging, 2035 Projection in One UA

8,000

8,000
6,000 = SLLY

2

©

c

©
4,000 £ 4,000

Q

()]

=)

Q

2
2,000 | 2,000 ¥

Example Week from 2035 (hourly) Example Week from 2035 (hourly)

= Non-Transportation UA Demand [l MDV W HDV # Non-Transportation UA Demand B MDV W HDV
ELDV 100mi W LDV 200mi LDV 300mi M LDV_100mi W LDV_200mi LDV_300mi

W LDT_100mi WLDT 200mi ® DT _300mi M1pT 100 DL 200 mIDL 300




Model Building Electrification to Understand Its Impact

Goal: Estimate future building electrification including space heating, water heating, and cooking
» Fossil fuel model and electricity demand model in buildings

» High resolution: Public Use Microdata Areas (PUMA), Balancing Authority, hourly for 10 years

74
»  PeakRatio
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Figure 3. Census Tract Electricity Peak Ratios in an All-Electric Space Heating Scenario-Base Heat Pump Model




Res. Space Heating Sales
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High resolution: Public Use Microdata Areas (PUMA), hourly for 10 years
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Space Heating Electrification Creates Winter Electricity Demand Peak

CONUS hourly load, 2019 load disaggregation, 2019 weather = CONUS hourly load, heating 100% electrified by heat pumps, 2019 weather
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TWh

Electricity Consumption Will Soar During Winter Months

monthly total electricity usage, 2019 load disaggregation monthly total electricity usage, 100% heating electrified, 2019 weather
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Extreme Cold Weather May Add Extreme Stress To The Grid

CONUS peak week hourly load, 2019 load disaggregation CONUS peak week hourly load, 100% heating electrified, 2019 weather
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Higher Winter Peak Requires Energy System Planning to Consider
Both Summer and Winter Resource Adequacy

monthly peak electricity power, 2019 load disaggregation monthly peak electricity power, 100% heating electrified, 2019 weather
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Demand Response and Flexibility

Demand response provides an opportunity for
consumers to play a significant role in the operation of
the electric grid by reducing or shifting their electricity
usage during peak periods in response to time-based
rates or other forms of financial incentives.

Goal:

How much demand response is available at a

certain location and time? At what cost?

How to optimally utilize the demand response in

future energy system with high renewables and

electrification?

* High resolution: utility level, hourly for 5+ years,
residential, commercial and industry.

« Demand response optimization capability: load
shifting, load, shedding, response cost,
flexibility boundary

Enengy Consumption

Peak clipping

—  Usual consumption
Optimized consumption

Valley filling

Time (Hours of Day)



Demand Response and Flexibility: Texas Case Study

Massive electric power outage across the state of Texas caused by the severe winter storm Uri

* Around 4.5 million homes / businesses lost power. 20000 MW peak load shed on Feb. 15
evening. Over $195 billion economy loss

How can we mitigate the outage using strategic Demand Response programs?

» Residential load rationing — Allow all customers to power necessities

 Interruptible load contract — Upscaled participation

* Incentivized demand curtailment — On-the-spot load reduction

a. Interruptible load b. Load rationing c. Incentive-based demand response
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Thoughts on the Complexity of the Future Energy Systems

« Deep understanding of each sector’s electrification characteristics

* Integration of multiple sectors into one system to understand their interaction
and explore optimization

« Weather and climate model

« Communication and control model

« QOrganization and business model



Questions? Comments? Contact Me!
XUYIXING2005@GMAIL.COM



