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Abstract 

 

As a new general-purpose technology, robots have the potential to radically transform industries 

and employment. In contrast to prior studies at the industry level that predict dramatic employment 

declines, we find that investments in robotics are associated with increases in total firm 

employment, but decreases in the total number of managers. Similarly, we find that robot 

investments are associated with an increase in the span of control for managers remaining within 

the organization.  We also provide evidence that robot adoption is not motivated by the desire to 

reduce labor costs, but is instead related to improving product and service quality.  Our findings 

are consistent with the notion that robots reduce variance in production processes, diminishing the 

need for managers to monitor worker activities to ensure production quality. Decreases in 

managerial headcount may also arise from changes in workforce composition.  We find that 

investments in robotics are associated with decreases in employment for middle-skilled workers, 

but increases in employment for low- and high-skilled workers, potentially changing managerial 

activities required by the firm. With respect to organizational change, we show that robots predict 

both centralization and decentralization of decision-making authority, but decision rights in either 

case are reassigned away from the managerial level of the hierarchy. This result contrasts with 

prior studies of information technology that have generally found decentralizing effects on 

decision authority within organizations. Overall, our results suggest that the impact of robots on 

employment and organizational practices is more nuanced than prior studies have shown. 
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1 Introduction 

 

We explore how employment and organizations have changed in response to robot adoption. As 

robotics and artificial intelligence (AI) are increasingly used by firms as the next engine of innovation and 

productivity growth, their effects on labor, firm practices, and productivity have become a subject of 

growing importance. Anecdotal evidence in the popular press has documented extensively that robots 

reduce overall employment and exacerbate income inequality, as rapid advancements in vision, speech, 

natural language processing and prediction capabilities have achieved parity with or exceed human 

capabilities across a range of tasks.  These technological advancements have shifted the comparative 

advantage from humans to machines for a growing list of occupations (Brynjolfsson and Mitchell 2017, 

Felten et al. 2019, Frey and Osborne 2017), potentially leaving human labor with substantially fewer 

activities that can add value (Brynjolfsson and McAfee 2014, Ford 2015). This technology-based labor 

substitution may displace a significant fraction of the overall workforce despite generating productivity 

gains (Acemoglu and Restrepo 2017, Autor and Salomons 2017, Ford 2015). If true, robots are likely to 

lead to significant changes in how firms organize production activities and manage their human capital 

(Bidwell 2013, Puranam, Alexy, and Reitzig, 2014, Zammuto et al. 2007).  

Recent empirical studies using data at the industry or geographic region levels show that robots are 

associated with drastic declines in overall employment (Acemoglu and Restrepo 2017, Dinlersoz and 

Wolf 2018, Graetz and Michaels 2018, Mann and Püttmann 2017). However, robots have also been 

argued to be similar to past generations of general-purpose technologies (GPT) that ultimately increased 

labor demand. In this competing view, even as labor is displaced, the new jobs created will more than 

compensate for the jobs lost (Autor and Salomons 2017). Preliminary evidence using firm-level data 

supports this view, and finds that robot-adopting firms become more productive and ultimately increase 

total employment (Koch et al. 2019).  These new jobs are likely to complement robots, suggesting a 

compositional change in labor within firms. As robots offer new capabilities that differ from prior 

information technology (IT) investments (Brynjolfsson and Mitchell 2017), changes in human capital and 

the organization of production activities may also differ from those caused by IT and reflect those that are 

complementary to robots. 

Using comprehensive data on businesses in the Canadian economy spanning the years 2000-2015,1 

we show that robots are associated with increases in total employment, but the effect is not uniform across 

workers. Investments in robotics predict substantial declines in managerial employment, despite increases 

in non-managerial employment. This finding contrasts with prior information technologies that could not 

 
1 We use two main datasets for our empirical analysis spanning overlapping timeframes, described in more detail in 

the data section.   
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easily replace managerial and professional work (Autor et al. 2006, Autor et al. 2003, David and Dorn 

2013, Dustmann et al. 2009, Murnane et al. 1999). We find evidence that robots may affect managerial 

employment in two ways. First, robots may directly reduce the need to monitor and supervise workers 

when robots can substantially diminish human errors in the production process.2 Given that supervision of 

workers accounts for a substantial portion of work done by managers (Hales 1986), demand for 

managerial labor to supervise workers may decline with robot adoption. Second, robots may also 

indirectly affect managerial employment through changing the types of workers needed. Although the 

total number of non-managerial employees increase with robot adoption, we also find that robot 

investments predict decreases in employment of middle-skilled workers and increases in employment of 

low- and high-skilled labor. These changes in labor composition may result in a reduction in managers 

(Malone 2003, Mintzberg 2013). Consistent with our findings of an increase in non-managerial 

employees and a decrease in the number of managers, we find that robot investments predict an increase 

in the span of control for managers remaining within the organization. 

In examining the motivations for robot adoption by firms, we find that robot investment is not 

associated with the strategic importance of reducing labor costs, but is instead associated with an increase 

in the strategic importance of improving product and service quality. For the allocation of decision 

authority within organizations, we find that robot investments predict both centralization and 

decentralization of decision rights away from the managerial level of the hierarchy. This suggests that not 

only has managerial headcount decreased, but their decision authority is also diminished. This result 

differs from earlier studies that found IT generally led to decentralization of decision rights (Acemoglu et 

al. 2007, Bresnahan et al. 2002). Overall, our results show that changes in employment are related to 

complementary changes in organizational practices that are critical to the effective use of robots. 

To the best of our knowledge, this study provides the most comprehensive evidence at the level of 

individual businesses on the employment and organizational effects of robot investments. The wide range 

of outcomes we examine—employment, labor composition, span of control, strategic priorities, and the 

allocation of decision rights—suggest that robots have a substantive effect on both employment and the 

organization of production in ways that differ from prior technologies. Our analysis also provides a 

deeper data-driven examination of how robots can change employment and organizational practices that 

are difficult to capture using country and industry level data (Raj and Seamans 2018). More broadly, our 

results suggest that detailed exploration at the level of individual organizations can provide useful insights 

in contributing to the important debate about the consequences of robots for labor and organizations. 

 
2 https://www.indeed.com/career-advice/what-does-a-production-supervisor-do 

 

https://www.indeed.com/career-advice/what-does-a-production-supervisor-do
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2 Theoretical considerations 

 

The adoption of GPTs is often associated with substantial and widespread productivity gains across 

different sectors of the economy (Bresnahan and Trajtenberg 1995). To maximize the value of GPTs, firms 

must substantially reorganize their work activities and change the nature of work and human capital 

requirements (Autor et al. 2003, Bresnahan et al. 2002, Brynjolfsson et al. 2018). As a recent and rapidly 

proliferating GPT (Brynjolfsson et al. 2018, Cockburn et al. 2018), robots have the potential to transform 

employment, firm practices, and the economy (Agrawal et al. 2018, McAfee and Brynjolfsson 2017).  

2.1 Robots and total employment 

The effect of robots on employment remains an open question. Research examining the effect of robots 

on labor is still nascent, with only a few studies examining the substitutability of robots on work (Acemoglu 

and Restrepo 2017, Arntz et al. 2016, Frey and Osborne 2017, Mann and Püttmann 2017, Manyika 2017). 

However, most of these preliminary studies predict dire consequences of labor displacement from robot 

adoption. For example, Frey and Osborne (2017) find that up to 47% of all jobs in the United States may 

be displaced. Using a task-based approach breaking each occupation into a set of concrete tasks, OECD 

researchers find that 70% of tasks performed by labor could be automated (Arntz et al. 2016). Other studies 

using the task-based approach have concluded that more than 50% of work tasks are vulnerable to 

automation (Manyika 2017), leading to both labor displacement and wage reductions (Bessen et al. 2019). 

Using a measure of robot penetration at the industry level in the US, Acemoglu and Restrepo (2017) find 

that one robot can replace roughly six people. Graetz and Michaels (2018) also find that robot adoption is 

associated with a reduction in hours worked for low-skilled labor, using similar data on robot adoption for 

17 countries.  

The findings from these initial studies stand in stark contrast to earlier generations of technologies that 

have been found to increase employment in conjunction with productivity, ultimately leading to labor’s 

share of productivity remaining constant. Instead of reducing employment, robots may also positively affect 

employment through 1) productivity increases from labor substitution inducing demand for other goods and 

services that require non-automated tasks; 2) capital deepening that increases the effectiveness of robots, 

which can increase productivity without further reducing labor; or 3) the creation of new tasks or increased 

demand for existing tasks that are complementary to robots (Acemoglu and Restrepo 2018, Brynjolfsson et 

al. 2018). Initial results from surveys of Spanish manufacturing firms suggest that organizations that adopt 

robots experience both productivity and employment gains (Koch et al. 2019). 

These differing results are in part due to difficulties in observing these countervailing effects in an 

entire  economy using data at the industry and geographic region levels. Studies at these levels of analysis 

cannot clearly examine how firms use robotics to substitute or complement labor. As prior literature 
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examining the link between IT and productivity has shown, analysis at more aggregated levels can often 

lead to markedly different conclusions from empirical studies conducted at the firm level (Bresnahan et al. 

2002, Brynjolfsson and Hitt 1996). These differences can arise due to the substantial heterogeneity in 

productivity growth across firms that cannot be clearly observed at the industry level or other aggregated 

levels of analysis (Syverson 2004). For example, robot adopting firms may experience productivity and 

employment gains while non-adopting firms in the same industry experience employment and productivity 

losses. If true, even if robots are observed to cause employment losses at the industry level, it remains 

unclear whether robots displace workers within robot-adopting firms or if workers are instead displaced in 

non-adopting firms due to a decrease in competitiveness.  Without clarity behind these underlying 

mechanisms, meaningful inferences become particularly challenging, with similar empirical issues 

hampering early attempts to understand the effects of IT investment on organizations.  Ultimately, more 

precise measurement of both IT and organizational capabilities at the firm level was critical to resolving 

the IT-productivity paradox that earlier studies discovered, and to uncovering the factors explaining the 

heterogeneous effects of IT on firm outcomes (Brynjolfsson et al. 2002). With a firm-level measure of robot 

investments for the population of firms in Canada, we empirically investigate the competing hypotheses of 

whether robot-adopting firms increase or decrease employment in firms. 

H1a: Robot investments are associated with increases in total employment. 

H1b: Robot investments are associated with decreases in total employment. 

 

2.2 Robots and non-managerial employment 

Regardless of the effect on total employment, workforce composition is likely to change with robot 

adoption as demand for different skills changes within the firm, similar to prior generations of skill-biased 

technical change.  For example, the rise of IT in the late 1990s led to a reduction in the demand for low- 

and middle-skill occupations as routine tasks became automated, and a corresponding increase in demand 

for nonroutine and cognitively challenging tasks including managing employees (Autor et al. 2006, Autor 

et al. 2003, Card and DiNardo 2002, Murnane et al. 1999).  Similar to these studies, we define low-skilled 

workers as those working in occupations requiring a high school degree or less; middle-skilled workers as 

those working in occupations requiring vocational/trades accreditation or an associate degree; and high-

skilled workers as those working in occupations requiring at least an undergraduate university degree. 

Although nonroutine and cognitively challenging tasks have been argued to be difficult to automate (Autor 

et al. 2003, Murnane et al. 1999), the increasing sophistication of robots is likely to automate tasks that 

were previously unaffected by automation.  

With advances in vision, speech, and prediction capabilities, robotics has advanced beyond automating 

simple routine tasks and become capable of performing more cognitively complex work, as well as tasks 
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involving specific types of manual dexterity. Middle-skilled workers are more likely to perform these tasks, 

which robots are more able to automate. For example, in the healthcare and pharmaceutical industries, 

robots have been used to handle and prepare materials, follow complex protocols to prepare and analyze 

samples, and help coordinate patient care without human intervention (Gombolay et al. 2018). Firms with 

significant warehousing operations have also experienced similar effects. Robots have automated a large 

range of warehousing logistics activities by effectively transporting objects between locations without 

human intervention. By relieving humans from lifting and handling awkward, heavy objects during 

inventory management, robots not only avoid injuries but also provide consistency in product quality and 

decrease overall delivery time.3 In manufacturing, industrial robots can substantially reduce variance in 

product quality. Machine vision enables robots in the automotive industry to consistently install and weld 

parts onto car bodies with a high degree of precision, minimizing errors in the production process.4 This 

can involve difficult manual manipulations such as 360-degree multi-arm rotations with many repetitions. 

Robots can be programmed to perform these tasks precisely over a long period of time. Accordingly, robots 

can substantially reduce both unintended human errors such as those arising from fatigue, as well as 

deliberate actions such as gaming production quotas that have previously impeded productivity and 

effective management (Helper and Henderson 2014).  

These illustrative examples suggest that robots can automate certain complex tasks that were primarily 

the responsibility of middle-skilled workers, including technicians, machinists, and operations personnel 

from a variety of industries that are responsible for following complex protocols to ensure production 

quality. These tasks may also involve certain types of manual dexterity that require significant learning 

over time for humans. With robots, many of these tasks can be automated using algorithms, eliminating 

human errors and the need to provide training for these skills.  By reducing production quality variance, 

robots can decrease the demand for middle-skilled work, given the vulnerability of these tasks to robot-

based automation. 

H2: Robot investments are associated with decreases in middle-skilled employment. 

However, investments in robotics may also create demand for human labor and tasks that complement 

robots. While demand for middle-skilled work may decrease through direct substitution, demand for 

complementary work, either lower or higher-skilled, may increase with robot adoption. For firms that 

redesign their production processes to leverage the capabilities that robots can offer, productivity may 

increase, ultimately leading to increases in employment for specific types of workers. Despite recent 

technological advances, robots are often unable to fully automate most production processes; for many of 

these “residual tasks,” human labor remains a more efficient and cost-effective solution (Autor et al. 2003, 

 
3 https://www.nytimes.com/2017/09/10/technology/amazon-robots-workers.html 
4 https://blog.robotiq.com/bid/69722/Top-5-Robotic-Applications-in-the-Automotive-Industry 

https://www.nytimes.com/2017/09/10/technology/amazon-robots-workers.html
https://blog.robotiq.com/bid/69722/Top-5-Robotic-Applications-in-the-Automotive-Industry
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Brynjolfsson and Mitchell 2017). For example, Elon Musk famously scaled back investments in automation 

in Tesla’s factory and reintroduced human workers after too much automation slowed the production of the 

Model 3 electric vehicle and delayed its market launch.5 In order to effectively utilize robots, human capital 

must also be reorganized and reassigned to aid production. As an example, Amazon significantly redesigned 

work in its warehouses to effectively utilize its Kiva Robotic systems. Robots are used to travel between 

locations within the warehouse, but human workers pick and pack products delivered by the robots. In this 

case, instead of having middle-skilled workers managing inventory by walking from shelf to shelf to 

examine and handle products, robots and algorithms can automate this process and bring inventory directly 

to human workers, who then pick them up and place them into shipping boxes. Researchers have also 

systematically matched occupations to what machine learning can do and find that many of the manual 

skills performed by low-skilled labor cannot be easily replaced using technology (Brynjolfsson and Mitchell 

2017, Felten et al. 2019). While machine learning is not identical to robot technologies, robotics rely heavily 

upon on machine learning to make inferences and thus can serve as a useful indicator of how robots may 

affect work. 

 Current evidence suggests that although robots can increase manual dexterity for certain tasks, they 

cannot yet effectively perform many manual tasks that humans can easily do. Accordingly, productivity 

increases from robot investments will lead to increases in demand for low-skilled workers doing these 

residual tasks. 

H3: Robot investments are associated with increases in low-skilled employment. 

Demand for high-skilled workers may also increase with robot adoption. Similar to the example of how 

Amazon reorganized warehouse work activities after robot adoption, the majority of productivity gains 

from technology adoption come from the complementary redesign of work (Bresnahan et al. 2002, Hammer 

1990). Implementing the necessary process improvements and work reorganization requires highly skilled 

professionals (Bresnahan et al. 2002, Hammer 1990, Helper and Henderson 2014, Huselid and Becker 1997, 

Ichniowski et al. 1997), some of whom are needed to program, repair, customize and work with robots 

(Acemoglu and Restrepo 2017, Autor and Salomons 2018, Brynjolfsson and Mitchell 2017). However, 

demand for high-skill workers may also increase for those that do not directly work with robots, as 

automating certain routine tasks may free up resources to engage in more cognitively complex tasks. For 

example, when hospitals adopt robots to lift patients out of beds, nurses are not only relieved of the physical 

strain from tasks that are prone to injuries, but also given more time to interact with patients and participate 

in clinical treatment (Gombolay et al. 2018). Similarly, by algorithmically providing pills and other 

medications directly to the patients (Bepko Jr et al. 2009), nurses can spend more time ensuring compliance 

 
5 https://www.theverge.com/2018/4/13/17234296/tesla-model-3-robots-production-hell-elon-musk 

https://www.theverge.com/2018/4/13/17234296/tesla-model-3-robots-production-hell-elon-musk
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and making other clinical decisions. In the context of manufacturing, when much of the routine production 

process is done by robots and low-skilled labor, this can free up time and resources for high-skilled 

professionals to design and market new products and optimize production processes (Felten et al. 2019). 

Programmable robots can also increase a firm’s flexibility in serving different types of orders and in 

providing a greater range of products. This can further increase the demand for higher-skilled workers who 

can design a greater range of products. Consistent with these arguments, Autor and Dorn (2009) find that 

investments in computer technologies over the last several decades contributed to the widespread increase 

in high-skilled jobs engaged in creative, problem-solving, and coordination tasks. Similarly, Felten et al. 

(2019) find that investments in artificial intelligence are correlated with increased employment of high-

skilled workers such as software engineers. Thus, we expect employment of high-skilled workers to also 

increase after robot adoption.  

H4: Robot investments are associated with increases in high-skilled employment. 

 

2.3 Robots and managerial employment 

Managerial employment may also change significantly with robot adoption. When production is 

automated using robotics, human errors are substantially reduced and variance in production quality 

decreases (Verl 2019). Unlike humans, robots can precisely perform the same complex protocol repeatedly 

for long periods of time without experiencing fatigue, leading to both productivity increases as well as 

fewer errors in the production process. Agency problems arising from information asymmetries also do not 

exist with robots, as robots do not operate for self-interested gains the way humans might in work settings 

(Eisenhardt 1989, Hong et al. 2019, Jensen and Meckling 1976). Given the substantial costs of employee 

monitoring for firms (Dickens et al. 1989, 1990) and considerable time spent by managers monitoring 

employee activities (Hales 1986, 1999), the adoption of robots in production can substantially reduce the 

need to closely monitor work effort and quality. Through both a reduction in variance in the production 

process and the lack of agency costs associated with managing robots, the level of monitoring required to 

ensure production quality is likely to decline.  Given that monitoring and control constitute a significant 

portion of managerial activities (Kolbjørnsrud et al. 2016), the demand for managerial labor is likely to 

decrease after robot adoption. 

While robots can reduce demand for managers through decreasing the need to monitor employees in 

production, they may also affect managerial work by changing the composition of non-managerial 

employees within the organization. If robot adoption is associated with a decline in middle-skilled workers 

and an increase in high- and low-skilled workers, managerial activities may change for the newly 

transformed workforce. Managing low-skilled workers can differ substantially from managing other types 

of employees as low-skilled work is typically more standardized, and consequently easier to monitor and 
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evaluate than their higher skilled counterparts ( Mintzberg 1980, Perrow 1967). Also, an individual manager 

can potentially supervise many more employees if digital tools automate aspects of monitoring standardized 

work. For example, technology can be used to organize and report the output of simple routine tasks and 

even make predictions about work outcomes (Aral et al. 2012), especially for standardized work where 

inputs and outputs can be specified and clearly measured (Brynjolfsson and Mitchell 2017). In the case of 

Amazon, the productivity of warehouse workers is tracked in real time and an automated system generates 

recommendations for employee warnings and terminations when productivity targets are not met.6 Having 

an objective measure of productivity recorded using automation technology also reduces disruptive 

conflicts between managers and subordinates, since objective productivity measures are more difficult to 

dispute (Scully 2000, Wu 2013). As the fraction of low-skilled workers in the organization’s workforce 

increases, fewer managers may be needed within the organization.  

In addition to differences in managing low-skilled work, managing highly skilled professionals is also 

likely to differ from managing middle-skilled workers. High-skilled workers often engage in more 

cognitively challenging tasks which provide higher added value, such as product design and production 

optimization. Managing these types of workers is likely to differ substantively from managing workers 

doing routine manual tasks (MacDuffie 1997, Parker and Slaughter 1988). Supervising low- and middle-

skilled workers primarily involves ensuring that employees arrive on time, verifying compliance with rules 

and regulations, monitoring their work procedures and output, issuing commands, and training them to do 

the job properly (Helper and Henderson 2014, Taylor 1977). By contrast, employees doing more cognitively 

complex work are often experts themselves in dealing with problems outside of routine operations, and can 

resolve production problems better than their managers (Helper et al. 2000, Kenny and Florida 1993). These 

employees are often empowered to make more decisions because they are more capable of solving relevant 

problems than their managers (Huselid and Becker 1997, Ichniowski et al. 1997). As a consequence, 

managing these employees may entail less direct issuing of commands and more advising and 

empowerment of employees to solve problems (Malone 2003, Mintzberg 1973, Mintzberg 2013).  

While we expect span of control to increase for managing low-skilled workers, the expected change is 

ambiguous when subordinates are high-skilled workers. If workers require more advising and coaching 

from managers, managerial span of control may decrease (Malone 2003, Malone 2004). High-skilled 

workers have also been argued to pose unique challenges to the efficiency of organizational hierarchies due 

to greater needs for communication and conflict resolution, which can be mitigated by decreasing span of 

control (Bell 1967, Meyer 1968).  However, effective utilization of high-skilled labor often leads to granting 

employees greater autonomy (Bresnahan et al. 2002), potentially leading to increases in span of control 

 
6 https://www.inc.com/suzanne-lucas/amazon-fires-hundreds-via-computer-algorithm-im-okay-with-that.html 

 

https://www.inc.com/suzanne-lucas/amazon-fires-hundreds-via-computer-algorithm-im-okay-with-that.html
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(Simon 1946). Prior literature examining the relationship between skill composition changes and span of 

control in the presence of technology adoption has been limited, but available evidence generally finds net 

positive effects on span of control (Scott et al. 1994).7  If decreases in the demand for managerial labor 

from reduced monitoring requirements and skill composition changes dominate potential increases due to 

productivity gains, demand for managerial labor may ultimately decline. Given these arguments, we expect 

that managerial employment will decrease with robot adoption. 

H5: Robot investments are associated with decreases in managerial employment. 

3 Data and Measures 

3.1 Data 
 

To measure robot investment at the firm level, we use data capturing the purchases of robots imported 

by Canadian firms provided by the Canadian Border Services Agency (CBSA) from 1996 to 2017. Global 

production of robotics hardware is highly concentrated in relatively few countries including Japan, 

Germany, the United States and increasingly China. By contrast, Canada does not produce a meaningful 

quantity of robotics hardware domestically and consequently must import robots from foreign producers, 

allowing us to exploit data on import transactions to measure robot adoption by firms. For all import 

transactions, the CBSA classifies goods according to Harmonized System (HS) codes, and classifies 

industrial robots separately from other types of technologies, machinery, and equipment.89 In addition to 

the HS code, the name of the exporting firm, product country of origin, name and address of the importing 

firm, business number of the importing firm (a unique government-issued identifier for Canadian 

businesses) and value of the transaction are recorded. As an additional validity check of our measure of 

robot investment, we benchmark our measure to data reported by the Robotics Industry Association (RIA), 

and find both measures are comparable, showing similar trends over time (see detailed discussion in 

Appendix section S1). 

Since we are using import data, the definition of robots is ultimately based upon what types of import 

transactions are being classified as “robots.”  As a starting point, we note that the International Federation 

of Robotics (IFR) defines industrial robots as having the characteristics of being 1) automatically controlled, 

2) reprogrammable, 3) a multi-purpose manipulator in three or more axes, and 4) used in industrial 

automation applications.  The IFR provides a number of examples of robots and what their primary 

 
7 Bloom et al. (2014) also find a positive relationship between IT investment and span of control, but were not able 

to observe corresponding changes in employee skill composition. 
8 Industrial robots are a separate classification at the ten digit HS code level recorded by the CBSA.  
9 The classification details several different types of robots as distinct HS codes, which can be grouped into two 

consistent categories across the time period of our data: 1) robots for automotive assembly lines and 2) all other 

types of industrial robots.  Our measure of total robot investment is the sum of these two categories of robots. 
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functions are in both their published material and on their website, which include activities such as 

assembly, welding, painting, packaging, picking and placing, and handling materials for metal casting.  In 

principle, firms that are members of IFR-affiliated industry associations are likely to define “robots” to be 

consistent with the IFR definition. 

To examine our measure of robotics investment in greater detail, we manually conducted searches in 

the public domain for transactions accounting for 95% of the total value of robot purchases in our data.  

Members of IFR-affiliated industry associations (e.g., Robotics Industry Association, Japan Robot 

Association) accounted for 58.4% of the total value of imports in our data.  Firms that were not robotics 

association members but that advertised selling the same type of robots accounted for another 13.3% of the 

value.  Most often these firms specialized in installing and integrating robots actually produced by 

association members.  For an additional 2% of the total value of transactions, the exporting firms were not 

affiliated with a robotics industry association but manufactured robots for scientific laboratories.  Imported 

mainly by firms in the healthcare industry in our data, these robots automate a variety of repetitive tasks in 

biology and chemistry research, such as pipetting. 

An additional 19.0% of the total value was attributable to importing firms in industries that use robots 

intensively:  primarily the automotive industry, but also machine tools and plastics manufacturing. Some 

firms in these industries are members of robotics industry associations, but our data has more 

comprehensive coverage of firms that invest in robots.  Given the well-documented prevalence of their use 

in these industries and from examining the types of robots used by the importing firms in these transactions, 

we were able to infer that these transactions reflected investments in robotics similar to transactions 

involving robotics association members.  For the remaining 2.3%, firm websites confirmed robots being 

utilized across a variety of activities, including performing repairs, handling materials in hazardous 

environments such as pipelines or nuclear power plants, as well as in construction and demolition. 

We merge our robot investment data with two datasets maintained by Statistics Canada containing 

measures of firm characteristics: 1) the National Accounts Longitudinal Microdata File (NALMF), a panel 

dataset that contains measures of aggregate firm-level employment and economic inputs derived from tax 

filing data from 2000-2015; and 2) the Workplace and Employee Survey (WES), developed and 

administered by the Business and Labour Market Analysis Division and the Labour Statistics Division at 

Statistics Canada.10 The WES consists of both an employer component which contains comprehensive 

information on employment and management practices at the organizational level, and a linked employee 

component measuring individual-level job characteristics and activities.  The employer survey sample is a 

random stratified sample in a panel structure, representative of the population of business establishments in 

 
10 Datasets are linked by organization-year using unique identifiers provided by Statistics Canada. 
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the Canadian economy in each year.1112  For the employee sample, individual employees were randomly 

chosen within each organization and surveyed for two consecutive years, with Statistics Canada resampling 

individuals from each organization after each 2 year cycle was completed. The WES employer survey data 

we use spans the years 2001-2006, while the employee survey data we use follows employees during the 

years 2001-2002 and 2003-2004.13   

We make several adjustments to both our NALMF and WES samples to more precisely capture those 

firms of sufficient size that purchased robots with the intention of implementing them as an end user for 

production. Here, we only include firms with at least ten employees, and removed those firms in the finance 

and insurance (NAICS code 52) and real estate rental and leasing sectors (NAICS code 53), as firms in 

these sectors were found to be primarily involved in leasing robots to other firms and comprised a negligible 

percentage of total robot imports into Canada. We also removed firms in service industries that were 

engaged in programming imported robots for the purpose of reselling them to other firms (NAICS codes 

5413, 5414, 5415, 5416), and firms in the wholesale trade sector (NAICS code 41). In our final data used 

for analysis, our NALMF sample contains 168,729 firms in total, our WES employer sample contains 3,981 

businesses establishments, and our WES employee sample contains 7,958 individual employees.  

3.2. Robot capabilities 

Based on our examination of individual robot import transactions, we found that robots are especially 

active in the automotive and machinery and equipment assembly sectors (see Appendix Figure A4), plastic 

processing industries, and in metal and manufacturing. In automotive manufacturing, robots are usually 

organized along a structured assembly line to fetch and position parts; fasten, rivet or weld parts together; 

and apply coatings and/or paint to the assembled parts. Robots are also prominent in the electronics 

assembly industry, where “pick and place” robots select circuits and place them on circuit boards or silicon 

wafers. They handle small, delicate parts with precision, selecting among different types and pressing them 

on to circuit boards. They can also visually inspect circuit boards, as well as test the connections, and can 

also be involved in etching circuit boards. Robots may also be involved in packaging finished products. In 

addition to improving quality, one of the main motivations for adopting robots in the electronics industry 

 
11 We note that the WES employer survey data is at the establishment level (approximately 95% of firms in the 

Canadian economy have only one establishment), and we conduct additional checks with Statistics Canada to ensure 

our results are robust to this issue. 
12 An important strength of the WES is that responding to the survey was mandatory under Canadian law, which 

resulted in regular response rates of approximately 90 percent, mitigating concerns of non-response bias in our 

analysis. 
13 In the NALMF data, there are 5,180 firms that adopt robots during the time period of the data (1.4% of all firms).  

In the WES data, there are 48 organizations that adopt robots during the time period of the data (0.85% of businesses 

in the sample) 
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is the increase in flexibility in serving different orders, switching from large volume orders to smaller 

batches. 

Robots are also used extensively in the processing of plastics, where they primarily perform secondary 

machine tending roles.  They also apply labels and move parts to other areas where they are further modified 

or packaged for shipment.  In the injection molding of plastic parts and packaging materials, they are also 

used to pick items and as label applicators. Overall, in the plastic processing industry, robots can replace a 

substantial part of repetitive manual labor. 

In minerals and metals manufacturing, robots are involved in loading and unloading metal blanks into 

computer numerical control (CNC) machine tools, repositioning semi-finished parts during the machining 

process, and deburring afterwards. A primary motivation for robot adoption by firms in die-casting 

industries is the improvement of worker safety. Foundries are dangerous work environments where robots 

(or workers) are subjected to intense heat and toxic fumes. The molded parts would then need to be cooled, 

modified, and inspected. Robots can control for quality in all these steps. When the quality of molded parts 

depends upon the skill of individual workers, robots offer much greater consistency. Individuals working 

with robots are also able to work much more safely and efficiently. 

In addition to these industry specific applications, palletizing is a ubiquitous application that robots can 

facilitate across many industries. Robots can recognize, pick up, orient and stack packages on pallets. They 

can move easily between packages of different sizes and varieties of different quantities. Combined with 

the ability to control for quality, robots can efficiently place items in packages, seal them, and label them 

with machine readable codes. This not only increases efficiency and precision, but also reduces injuries 

associated with palletizing large objects.  

3.3 Measures 

Here, we describe the measures used for our main baseline tests. 

Robot investment. Using our data capturing imports of robotics hardware, we create a measure of robot 

capital stock by adding all robot purchases by each firm recorded in each year. To adjust our robot capital 

stock measure for economic depreciation, we assume a useful life of 12 years based upon stated guidance 

given by the International Federation of Robotics (IFR).  

Employee count, hiring, and departures. To measure the total number of employees within the firm, 

we use the total count of employees provided in the NALMF data for each firm-year, recorded from payroll 

deduction remittance forms submitted by all Canadian firms to the Canada Revenue Agency (CRA). Total 

numbers of managerial and non-managerial employees are recorded as responses in each year of the WES 
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employer survey.14  The total number of new employee hires and departures are also recorded for each year 

of the survey data for both managerial and non-managerial employees. Non-managerial employee 

headcount is also reported by skill type, including middle-skilled, low-skilled, and high-skilled workers.15 

Strategic importance of labor cost reductions and quality improvements. To measure the strategic 

importance of labor cost reductions and quality improvements to the firm, we exploit a section of the WES 

employer survey which asks respondents to “please rate the following factors with respect to their relative 

importance in your workplace general business strategy” for the years 2001, 2003, and 2005. Respondents 

are asked to choose the importance of each factor on a Likert scale with possible responses being (1) Not 

applicable, (2) Not important, (3) Slightly important, (4) Important, (5) Very important, and (6) Crucial. 

Here, we consider the factors of “reducing labour costs” and “improving product/service quality” separately 

for analysis. For our measure of strategic priority of each factor, we redefine values of (2) on the Likert 

scale to be equal to (1) and reset the scale to be ascending from 1 to 5, as an increase from the original (1) 

to (2) and vice versa does not clearly capture the changes in strategic priority that we aim to measure.16 

Decision authority for training and choice of production technology. The WES employer survey data 

contain detailed information regarding decision-making authority for tasks across different layers of the 

organizational hierarchy, drawn from survey questions similar to those used by Bresnahan et al. (2002) and 

Bloom et al. (2014) measuring worker autonomy. The survey asks, “who normally makes decisions with 

respect to the following activities?” Here, we consider the activities of “training” and “choice of production 

technology” as they are directly relevant to the firm’s investments in human capital and use of robotics for 

productivity. For the 2003 and 2005 waves of the survey, survey respondents were given the following five 

possible responses to the question of who makes decisions: 1) non-managerial employees, 2) work 

supervisors, 3) senior managers, 4) individuals or groups outside the workplace (typically corporate 

headquarters for multi-establishment firms), and 5) business owners. To create distinct categories that 

correspond to hierarchical levels within organizations, we create three dummy variables, each equal to one 

if: 1) non-managerial employees were assigned decision authority over the task, 2) work supervisors or 

senior managers were assigned authority over the task, to capture managerial employees, or 3) business 

owners or corporate headquarters were assigned authority over the task. 

 
14 The survey provides a variety of examples of what is included in the definition of managers: “Examples: president 

of a single location company; retail store manager; plant manager; senior partners in business services firms; 

production superintendent; as well as vice-presidents, assistant directors, junior partners and assistant administrators 

whose responsibilities cover more than one specific domain, department heads or managers (engineering, 

accounting, R&D, personnel, computing, marketing, sales, etc.); heads or managers of specific product lines; junior 

partners or assistant administrators with responsibilities for a specific domain; and assistant directors in small 

locations (without an internal department structure).” 
15 Definitions of middle, low, and high-skilled workers in the survey match the definitions stated earlier in the paper. 
16 This modification does not change the sign or significance of our results from using each original variable. Simply 

dropping all values of (1) also produces results of identical sign and significance level. 
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Supervisor span of control. To capture supervisor span of control, the WES employee survey asks 

individual respondents whether they “supervise the work of employees on a day-to-day basis,” and if so to 

report the total number of employees who either directly report to them or who report to their subordinates.  

Here, we use this total count as our measure of supervisor span of control, and consider only those managers 

who are not promoted during the two-year period they are followed in the data.17  

Unpredictability of work schedule. To assess the unpredictability of the work schedule of employees, 

the WES employee survey asks respondents “how far in advance do you know your weekly hours of work?” 

with possible responses being (1) always known; (2) more than one month (more than 31 days); (3) one 

month (22 to 31 days); (4) 3 weeks (15 to 21 days); (5) 2 weeks (8 to 14 days); (6) 1 to 7 days; and (7) Less 

than one day.  For our main measure of work schedule unpredictability, we use the numerical value 

associated with each response, with increasing values denoting a shorter time period where employees know 

their work schedule in advance.18 

Controls. A number of control variables are also included in our analysis. In all our NALMF and WES 

employer sample specifications, we include organization fixed effects to address concerns of unobserved 

heterogeneity across firms and year fixed effects to control for aggregate shocks and trends. In our WES 

employee sample regressions, we also estimate models including individual employee fixed effects.  We 

control for organization size, measured by logged total assets in our NALMF sample, logged total revenues 

in our WES employer sample, and logged total employees in our WES employee sample.19  We also include 

a dummy variable control for firms that have multiple business units in our NALMF sample, or 

organizations that are part of a multi-establishment firm in our WES employer sample. In our WES 

employer sample analysis, we include separate dummy variables to control for business establishments that 

have an organized union, or implement outsourcing as an organizational change.2021 

 
17 Promotions were recorded as a separate question in the WES employee survey.  Including supervisors who were 

promoted and controlling for promotions with a dummy variable also produces results of identical sign and 

significance level. 
18 To ensure our results are not driven by scaling differences at values of (1), (2), and (7), we also repeat our 

estimation inlcuding only those values ranging from (3) to (6) and find similar results.  
19 Logged total assets is used in the NALMF sample since logged total revenues is a left hand side variable in our 

productivity regressions.  Logged total revenues is used in our WES employer sample since changes in employment 

are part of our main left hand side variables being tested.  Logged total employees is used in the WES employee 

sample as a more precise control for firm size that may affect our span of control dependent variable. 
20 These variables were not available in the NALMF data. 
21 Regarding outsourcing, the survey specifically asks each year “Has your workplace experienced any of the 

following forms of organizational change?” with “Greater reliance on external suppliers of products / services 

(outsourcing)” as a possible response.  Because organizational changes are likely to be quasi-fixed in the short time 

period of our data, the dummy variable control remains equal to one in subsequent years after outsourcing is 

reported.   
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4 Patterns and trends in robot adoption 

Figure 1 shows aggregate robot capital stock in Canada for each year from 1996-2017.22 Overall, 

investment has been steadily increasing since the late 1990s, with a substantial decline in investment growth 

corresponding roughly to the timeframe of the Great Recession.23 Since 2014, investment in robotics has 

again continued to increase. Since 2007, robot adoption has also proliferated more broadly across different 

sectors of the economy, with the most dramatic growth coming from outside the automotive sector (see 

Appendix Figures A4 and A5).  

5 Empirical strategy  

A primary concern in estimating the effect of robotics is that robot adoption is unlikely to be random, 

potentially biasing our coefficient estimates.  We address this issue in two ways, in addition to our 

robustness tests.  First, for our total employment regression (using the NALMF sample) we instrument for 

robot investment using the percentage of workers in each 4-digit NAICS code in occupations with high 

“manual dexterity” and low “verbal ability” in 1995 multiplied by the inverse of the median price per 

robot in Canada for each year.2425  Measures of occupation-level manual dexterity and verbal ability are 

obtained from the Career Handbook 2003, a dataset created by Employment and Social Development 

Canada, which contains ratings of the level of manual dexterity and verbal ability associated with over 

920 distinct occupations on a four-point scale.  We define high and low levels as the top and bottom two 

points on the scale, respectively.   The median price per robot for each year in Canada is calculated from 

the import data provided by the Canadian Border Services Agency (CBSA).  The percentage of workers 

in each 4-digit NAICS code in occupations with high manual dexterity and low verbal ability in 1995 

provides a cross-sectional measure of industries that have a higher proportion of workers that may engage 

in activities that more closely match the capabilities of robots, which is multiplied by the inverse median 

robot price in Canada to create a time-varying instrumental variable.  As robot prices decrease over time, 

those industries with a higher percentage of workers doing work similar to the capabilities of robots are 

presumably more likely to adopt them.  In using this as our instrument, we argue that both cross-sectional 

 
22 We note the graphs in this section use all available robot import data to show aggregate distribution and trends, 

not our NALMF or WES regression samples. 
23 We note that the Great Recession did not begin at the same time in Canada and the United States. The United 

States entered the Great Recession in December 2007, while Canada did not enter a recession until October 2008, 

which ended in July 2009.  
24 Our instrument for robot investment is similar to that used by Graetz and Michaels (2018). 
25 Examples of occupations include electronics assemblers, boilermakers, metal mold makers, metal patternmakers, 

tool and die makers, and machinists. 
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industry employment composition in 1995 and the national median price of robots serve as plausibly 

exogenous predictors of firm-level robot adoption. 

Second, we implement Coarsened Exact Matching (CEM) (Iacus et al. 2012), where we match robot-

adopting organizations with non-robot adopting organizations on key observables, and repeat the 

estimation of our main regressions on matched samples for comparison.  For our NALMF sample, we 

match firms in our sample that adopt robots to non-robot adopting firms by industry (measured by 4 digit 

NAICS code), year, province, whether the firm is a multi-unit enterprise, total assets, firm age, average 

annual earnings of the firm’s employees, and capital stock.  Matching is done exactly by industry, year, 

province, and multi-unit status, with coarsening allowed for the other variables.  For our WES sample, 

matching is done exactly by industry, year, and province, with coarsening allowed for total revenues, age 

of the organization, average annual employee earnings, and capital stock.26     

6 Results  

5.1 Main findings 

Results for our baseline tests of the relationship between robot investments and total employment are 

presented in Columns 1 and 2 of Table 1, for both our full and matched samples created from Coarsened 

Exact Matching. As Columns 1 and 2 show, the coefficient for our measure of robot investment is positive 

and statistically significant, predicting an increase in total employment and supporting Hypothesis H1a.  

Column 3 shows the results from our instrumental variable estimation, which is directionally consistent 

with both Columns 1 and 2 and very similar in magnitude to our matched sample results in Column 2.  For 

both the matched sample and IV estimations, a one percent increase in robot investment predicts roughly a 

0.015 percent increase in total employment within the firm. Considering robot capital is only 0.05% of 

factor share, this is a substantial effect and suggests there are complementary firm practices associated with 

robots. As an additional step, we estimate the same regression shown in Column 1, but now replace our 

robot investment measure with a series of time-indexed dummy variables for the years before and after 

robot adoption.  We plot the dummy variable coefficients graphically along with 95% confidence intervals, 

with results shown in Figure 2.  Prior to robot adoption, we find no evidence of differences in total 

employment trends with non-robot adopting firms, but an increase in total employment occurs beginning 

in the first year of robot adoption.  Results examining the relationship between robot investments and non-

managerial employment by different skill types are shown in Columns 4 through 9 of Table 1.  As Columns 

4 and 5 show, we find consistent evidence of a negative and statistically significant relationship with 

middle-skilled employment, supporting Hypothesis H2.  We also find evidence of a positive and statistically 

 
26 Multi-unit status was excluded because of too few available matches for estimation. 
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significant relationship for both low-skilled (Columns 6 and 7) and high-skilled (Columns 8 and 9) 

employment, supporting Hypotheses 3 and 4.   

Results for our tests examining the relationship between robot investment and managerial and total 

non-managerial employment are shown in Table 2, again presenting both full and matched sample results.  

In Columns 1 and 2, we find evidence of a negative and statistically significant relationship between robot 

adoption and managerial employment.  Similar to our exercise in Figure 2, we again estimate the same 

regression shown in Column 1, but now replace our robot investment measure with a series of time-indexed 

dummy variables for the years before and after robot adoption and plot the coefficients graphically in Figure 

3.  Prior to robot adoption, we find no evidence of differences in total managerial employment with non-

robot adopting organizations, but a substantial decrease in managerial employment occurs beginning in the 

first year of robot adoption.  In Table 3, we examine how robot investment may predict hiring and departures 

of managerial and non-managerial employees.  Robot adoption predicts less hiring of new managers 

(Columns 1 and 2), as well as an increase in the number of managerial departures (Columns 3 and 4), 

suggesting that both contribute to the change in managerial headcount.   

As additional confirmation, we test whether total employment increases may be explained by an 

increase in total non-managerial employment, with results shown in Columns 3 and 4 of Table 2. If our 

total employment or managerial employment results are due to measurement error of either variable, we 

are unlikely to observe a corresponding change in non-managerial employment. The coefficient for robot 

investment is positive and statistically significant, consistent with total employment increases being driven 

by non-managerial employees.  In Table 3, Columns 5, 6, 7, and 8 examine whether these results are 

explained by changes in hiring or turnover for non-managerial employees. The coefficient for robot 

investment is positive and significant across all specifications, suggesting that investments in robotics 

increase both non-managerial hiring (Columns 5 and 6) as well as non-managerial departures (Columns 7 

and 8). While both hiring and turnover increase, the net effect of the two (Columns 3 and 4 in Table 2) 

ultimately predicts a net gain in total employment for non-managerial employees. Increases in hiring and 

departures for non-managerial employees also suggest a compositional change in the workforce, consistent 

with our findings in Table 1 that show a decline in middle-skilled workers and increase in low- and high-

skilled workers. 

We next examine how robot investments may be related to changes in the strategic priorities of 

organizations, with results displayed in Table 4. The pattern of employment changes from robot adoption, 

especially the decrease in managerial employment, may be related to firms’ need to reduce labor costs. If 

true, our results may reflect a reverse causality where firms that focus on reducing expensive managers 

choose to adopt robots. As Columns 1 and 2 show, the coefficient for robot investment is not statistically 

significant, providing no evidence that purchases of robots by firms are motivated by a desire to reduce 
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labor costs. In Columns 3 and 4, we find a positive and significant coefficient for robot investment with 

respect to the strategic importance of improving product/service quality. Overall, the results suggest that 

robot investments are more likely to be motivated by improving the quality of production output, as opposed 

to efficiency gains from labor cost reductions. This suggests that the possibility of reverse causality where 

firms may choose to reduce managers and subsequently adopt robots is less likely. These results also 

corroborate evidence in the field, especially in manufacturing, that suggests robots are often used to improve 

consistency and reduce production variance.27 

5.2 Changes in organizational practices and the nature of work 

Here, we explore whether the allocation of decision authority to managers within the organization has 

changed after robot adoption. If firms are simply downsizing managers to reduce slack, we would not 

necessarily expect to observe a change in decision authority for managers remaining within the firm; 

downsizing may instead suggest that the remaining managers are doing more than before, and experience 

an increase in decision authority granted. To explore this possibility, we examine how robot investments 

predict the allocation of decision authority over training activities and the choice of production technology, 

with results shown in Tables 5 and 6. These two decisions are particularly relevant as they pertain to human 

capital management within the firm. Table 5 shows results for the allocation of authority for training 

decisions, with the coefficient for robot investment being positive for non-managerial employees (Columns 

1 and 2) and negative for managerial employees (Columns 3 and 4), with no significant relationship found 

for business owners/corporate headquarters (Columns 5 and 6). The results provide evidence of 

decentralization of responsibilities for training from managerial to non-managerial employees within the 

firm as a response to robot adoption. Table 6 shows results for the allocation of decision authority over the 

choice of production technology, with no significant relationship found for non-managerial employees 

(Columns 1 and 2), a negative and significant relationship for managerial employees (Columns 3 and 4), 

and a positive and significant relationship for business owners/corporate headquarters (Columns 5 and 6). 

In contrast with training activities, the results suggest the choice of production technology becomes 

centralized upwards from managerial employees to business owners/corporate headquarters. Although we 

cannot measure the allocation of decision authority for all managerial tasks, these results suggest that the 

type of work managers are doing is changing with robot adoption. The downsizing of managers is not just 

a reduction in headcount, but also a change in their decision authority and the nature of tasks they perform. 

These results also suggest that robot adoption is also associated with fundamental changes in organizational 

design. 

To further confirm our results at the organization level and consider how the nature of work may be 

 
27 https://www.robots.com/faq/why-should-my-company-use-industrial-robots 



19 

 

changing with robot adoption at the individual employee level, we begin by testing whether robot 

adoption at the organization level predicts changes in the span of control for managerial employees, with 

results shown in Column 1 of Table 7.  The coefficient for robot investment is positive and statistically 

significant, suggesting that robot adoption predicts increases in the span of control for managers 

remaining within the organization.  An increase in the span of control at the individual manager level is 

consistent with our earlier organization-level findings of a reduction in managerial headcount and an 

increase in non-managerial employees. 

As an additional test, we also examine how robot investment may change the routine nature of work 

for individual employees.  Here, we consider a specific definition of routine:  the degree to which workers 

can predict their schedule in advance, corresponding with the measure we use.28  As shown in Column 2 

of Table 7, we find a positive relationship between robot investment and the unpredictability of work in 

advance.29  The results are consistent with the notion that, as robots automate a larger proportion of tasks 

within the organization and reduce variance in the production process, human workers are left to focus on 

work that is less predictable in nature.  

5.3 Robots and performance measurement mechanism checks 

Here, we conduct two separate tests exploiting available measures in the WES employer survey to 

investigate whether robot investments affect the ability of firms to measure performance, as proposed in 

our theoretical arguments.  For our first test, we examine whether robot investments increase the likelihood 

of improvements in performance measurement when organizational change occurs within the workplace.  

The WES employer survey asks whether any organizational changes occurred during the year, defined as a 

“change in the way in which work is organized within your workplace or between your workplace and 

others.”30 If any organizational changes occurred, the survey subsequently asks respondents whether the 

impact of the organizational change that affected the most employees increased the “ability to measure 

performance” for the workplace.  Here, we create a dummy variable equal to one if the workplace reports 

having implemented an organizational change that increased the firm’s ability to measure performance.  To 

address sample selection concerns, we estimate a first stage probit regression predicting the occurrence of 

organizational change, using the strategic priority of “reorganizing the work process” to the firm as an 

exogenous predictor, and include the inverse Mills ratio from this regression as an additional control 

 
28 Hage and Aiken (1969) use a similar definiton in their study of routine work. 
29 As an additional robustness check, we repeated our analysis only on individuals that reported 3, 4, 5, or 6 

(equidistant time gaps), and found similar and statistically significant results. 
30 The survey then provides a list of possible organizational changes for respondents to choose from, ranging from 

“greater integration among different functional areas” to an “Other” category.  Because none of the choices 

obviously improve performance measurement in all work contexts, we focused on the reported impact of the 

organizational change on performance measurement rather than on the choice of organizational change itself. 
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variable.313233  As shown in Column 1 of Table 8, the coefficient for robot investment is positive and 

significant, suggesting that robots contribute to improved performance measurement when organizational 

changes are implemented. 

For our second test, we examine whether robot investments are positively related to the strategic 

priority of improving performance measurement to the firm.  For our measure of strategic priority, we 

again exploit the section of the WES employer survey which asks respondents to “please rate the 

following factors with respect to their relative importance in your workplace general business strategy,” 

but now consider the factor of “improving measures of performance.”34 As the results in Columns 2 and 3 

of Table 8 show, the coefficient for robot investment is positive and significant, suggesting that robot 

adoption and the strategic importance of improving measures of performance are positively related. 

5.3 Robustness checks 

Here, we conduct a series of additional robustness tests for our results.  We examine the relationship 

between robot investment and total employment across different industries (Appendix Tables A9-A11); 

control for IT investment as a possible omitted variable (Tables A12-A16);  investigate whether unobserved 

purchases from wholesalers and resellers within Canada (instead of direct import purchases) may be 

affecting our results (Table A17); control for general improvements in firm performance, which may 

explain our finding of increases in total employment (Table A18), implement an applied Heckman-style 

correction for the choice to adopt robots (Tables A19-A21); and control for imports from the US and China 

(Tables A22-A26).  Ultimately, we find similar results across our different tests.   

While we find consistent evidence of increases in total employment, we also find contrasting declines 

in employment for both managers and middle-skilled workers in our WES  For these two findings, we 

formally examine the sensitivity of our results to possible bias from omitted variables using the bounding 

method developed by Oster (2019).  The procedure exploits observable control variables that are 

correlated with unobservable controls, and examines how the coefficient of interest and regression R-

squared change when observable controls are included in the specification.  If the coefficient of interest 

remains relatively stable and the R-squared increases substantially, this increases confidence in the 

 
31 We note that the organizational change and strategic priority measures are recorded in separate section of the 

WES survey. 
32 This is because improvements in the firm’s ability to measure performance are only recorded for firms that 

implement an organizational change. 
33 Similar to the measure we use for the strategic priority of improving measures of performance, the WES 

questionnaire also records the strategic priority of “reorganizing the work process” on a Likert scale.  We adjust and 

rescale this variable in the same manner as our measure of strategic priority of improving measures of performance.     
34 Similar to our other strategic priority measures, we redefine on the Likert scale values of (2) to be equal to (1) and 

reset the scale to be ascending from 1 to 5.  This does not change the sign or significance of our results from using 

the original variable, and simply dropping all values of (1) also produces results of identical sign and significance 

level. 
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direction of our coefficient estimates.  To assess the level of confidence, Oster (2019) derives a simple 

parameter δ that represents how strong selection on unobservables would have to be relative to selection 

on observables to diminish the coefficient of interest to zero.  Oster (2019) suggests that an absolute value 

of δ greater than 1 implies a sufficient degree of confidence in the direction of the coefficient estimate.  

Results of our analysis are shown in Tables A27 in the Appendix.  For both our managerial and middle-

skilled employment specifications, the absolute values of δ are above 1, suggesting our results are 

relatively robust to concerns of selection on unobservables. 

7 Discussion and conclusion 

Utilizing novel data capturing investments in robotics for a population of businesses in a developed 

economy, we provide the first firm-level evidence of the effect of robot adoption on employment and 

management and the associated changes in organizational practices. The results suggest that robots do not 

affect employment within the firm uniformly, leading to net increases in the headcount of non-managerial 

employees, but also decreases in the headcount of managerial employees. This is consistent with the notion 

that by taking on a subset of responsibilities and activities in the production process of the firm, robots 

affect the demand for workers engaged in other activities within the firm. Employees whose skills have 

greater complementarity to robot investments are more likely to experience net gains in employment, 

depending on the degree to which their skills are complementary. In our study, we find evidence of skill 

polarization of the non-managerial workforce, with decreases in middle-skilled employment and increases 

in low and high-skilled employment, consistent with prior findings on automation (Autor and Salomons 

2018, Autor et al. 2003). Surprisingly, we find evidence of displacement of specific higher cognitive-skilled 

jobs such as managers that were previously less vulnerable to skill-biased technical change from earlier 

waves of technology. We find that this reduction may be the consequence of both a decrease in the need 

for certain types of supervisory work from robot adoption as well as an indirect effect from the changing 

composition of non-managerial employees. Consistent with a decline in managerial employment and 

increase in total employment, we find that the span of control for managers has also increased after robot 

adoption. We also find evidence that managerial work has fundamentally changed after robot adoption, as 

their decision authority has been reduced. However, we find no evidence that job losses are caused by firms 

desiring to cut labor costs, and instead find evidence that firms primarily adopt robots to improve product 

and service quality.  

In addition to changes in employment, we also observe that organizational practices change with robot 

adoption as the allocation of decision authority for certain tasks shifts to different layers of the hierarchy, 

away from managers. Human resource-related decisions with respect to training are decentralized from 

managers to non-managerial employees, while the choice of production technology is centralized from 
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managers to business owners and corporate headquarters. This differs from effects of earlier generations of 

IT that tended to decentralize decision authority (Acemoglu et al. 2007). However, with robot adoption 

rapidly increasing in prevalence and capability, we expect that the allocation of decision authority and other 

complementary work practices are likely to continue to evolve. Those firms that can best match their 

capabilities and work practices to productive opportunities can benefit substantially from robot investments 

and develop potential competitive advantages, highlighting the need to understand the different types of 

complements to robots as a new technology.  

Overall, our findings using organization-level data suggest the effect of robots on labor is more nuanced 

than earlier work has predicted and requires a deeper examination beyond the level of industry or region to 

understand how they are used to complement and substitute labor and how organizational practices need to 

evolve around the changing nature of work. While our analysis suggests that robot adoption is associated 

with using different types of labor, the associated implication for wages is also an important question. The 

extent to which wages may change depends on the type of jobs that are created and eliminated. Our initial 

evidence suggests that although labor cost reduction is not the primary reason for why firms adopt robots, 

the reduction in managerial and middle-skilled employment and increase in low and high-skilled 

employment ultimately predicts an ambiguous result for average wages. However, complementing our 

finding of a decline in demand for middle-skilled employment, Dauth et al. (2018) use industry-level robot 

investment to examine effects on employee wages, and find that robot adoption leads to substantial wage 

decreases for middle-skilled workers.   

Changes in employee types and skills as a result of robot adoption would also lead firms to implement 

complementary work practices to accommodate the skill change, similar to earlier generations of skill-

biased technical change (Bresnahan et al. 2002, Murnane et al. 1999). To understand these effects, the 

collection of microdata, especially at the firm level, is crucial. Additionally, better data about robot 

investment across different contexts are critical to understanding whether the effects we observe on 

employment and work practices can be generalized to other economies (Buffington et al. 2018, Frank et al. 

2019). While we provide detailed firm-level evidence on robotics and show that work practices have already 

evolved in response to robot technologies, future research should continue to examine how robotics 

technologies in general affect different firms, occupations, industries, and geographical regions (Felten et 

al. 2019). With rapid advances in robotics capabilities, understanding their implications is critical as 

investments in robots are likely to have profound effects on both employment and organizations.  
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Figure 1. Aggregate robot stock in Canada, 1996-2017  

 

 
 
Note: Robot stock is depreciated using a 12-year useful life assumption, following guidance from the International  

Federation of Robotics (IFR). 
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Table 1. Total employment and non-managerial employment by skill type regressions 

 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

FE FE 2SLS FE FE FE FE FE FE

Dataset: NALMF NALMF NALMF

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

Sample: Full Matched Full Full Matched Full Matched Full Matched

Dependent variable: 

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

employees)

ln(Total 

middle-

skilled)

ln(Total 

middle-

skilled)

ln(Total low-

skilled 

production)

ln(Total low-

skilled 

production)

ln(Total 

high-skilled)

ln(Total 

high-skilled)

ln(Total assets) 0.191*** 0.215*** 0.346***
(0.013) (0.037) (0.016)

ln(Total revenues) 0.147 0.106 0.122 0.398** 0.040 0.037
(0.103) (0.094) (0.086) (0.162) (0.071) (0.074)

Multi-unit enterprise 0.139*** 0.144*** 0.500*** -0.077 -0.396*** -0.235* -0.049 0.090 0.486**
(0.014) (0.022) (0.027) (0.095) (0.062) (0.132) (0.074) (0.063) (0.175)

Unionized 0.389*** -0.092 0.200 2.052*** -0.219** -1.041*
(0.115) (0.669) (0.161) (0.477) (0.095) (0.523)

Outsourcing -0.001 0.419** 0.048 -0.335 0.171** 0.162
(0.086) (0.187) (0.104) (0.322) (0.068) (0.151)

ln(Robot capital stock) 0.007*** 0.015** 0.015*** -0.086*** -0.031** 0.061*** 0.021** 0.016** 0.018**
(0.002) (0.006) (0.004) (0.014) (0.012) (0.021) (0.009) (0.007) (0.008)

Industry fixed effects N N Y N N N N N N
Province fixed effects N N Y N N N N N N

Year fixed effects Y Y Y Y Y Y Y Y Y

Organization fixed effects Y Y N Y Y Y Y Y Y

Observations 929,162 41,399 865,759 17,449 1,746 17,449 1,746 17,449 1,746

Adj R-squared 0.92 0.94 0.70 0.74 0.72 0.83 0.59 0.76

Standard errors in parentheses, clustered by industry.  All regressions using WES data use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1
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Table 2. Managerial and non-managerial employment, hiring, and departure regressions 

 

  

(1) (2) (3) (4)

FE FE FE FE

Dataset:

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

Sample: Full Matched Full Matched

Dependent variable: 

ln(Total 

managers)

ln(Total 

managers)

ln(Total 

non-mgr. 

employees)

ln(Total 

non-mgr. 

employees)

ln(Total revenues) 0.084** 0.009 0.242*** 0.389***
(0.033) (0.168) (0.053) (0.093)

Multi-unit enterprise 0.032 0.307 0.046 1.199
(0.096) (0.434) (0.049) (0.847)

Unionized 0.168 0.594 0.025 -2.309***
(0.108) (0.472) (0.033) (0.488)

Outsourcing 0.001 0.160 0.005 -0.205*
(0.059) (0.152) (0.059) (0.115)

ln(Robot capital stock) -0.080*** -0.073*** 0.005** 0.016**
(0.011) (0.014) (0.002) (0.008)

Year fixed effects Y Y Y Y

Organization fixed effects Y Y Y Y

Observations 17,449 1,746 17,449 1,746

Adj R-squared 0.69 0.75 0.88 0.86

Standard errors in parentheses, clustered by industry.  All regressions using WES data 

use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1
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Table 3. Managerial and non-managerial hiring, and departure regressions 

  

Table 4.  Strategic priority regressions 

(1) (2) (3) (4) (5) (6) (7) (8)

FE FE FE FE FE FE FE FE

Dataset:

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

Sample: Full Matched Full Matched Full Matched Full Matched

Dependent variable: 

ln(Total 

mgr. hires)

ln(Total 

mgr. hires)

ln(Total 

mgr. 

departures)

ln(Total 

mgr. 

departures)

ln(Total 

non-mgr. 

hires)

ln(Total 

non-mgr. 

hires)

ln(Total 

non-mgr. 

departures)

ln(Total 

non-mgr. 

departures)

ln(Total revenues) 0.053 0.066 0.023 0.024 0.209** 0.045 0.077 0.203*
(0.070) (0.183) (0.037) (0.044) (0.082) (0.161) (0.084) (0.112)

Multi-unit enterprise 0.030 -0.343* -0.050 -0.061 -0.124 -0.584 0.178 0.006
(0.149) (0.185) (0.078) (0.223) (0.208) (0.419) (0.118) (0.192)

Unionized 0.279** 0.514 -0.019 -0.159 -0.149 -1.139*** 0.292*** 0.119
(0.124) (0.523) (0.067) (0.106) (0.104) (0.301) (0.100) (0.117)

Outsourcing 0.116 0.109 -0.049 0.089 0.158 -0.343** 0.062 0.053
(0.086) (0.101) (0.050) (0.115) (0.119) (0.173) (0.079) (0.084)

ln(Robot capital stock) -0.032*** -0.037*** 0.025*** 0.031** 0.044*** 0.028** 0.037*** 0.018***
(0.009) (0.013) (0.004) (0.012) (0.007) (0.014) (0.009) (0.006)

Year fixed effects Y Y Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y Y Y

Observations 17,449 1,746 17,449 1,746 17,449 1,746 17,449 1,746

Adj R-squared 0.19 0.22 0.06 0.03 0.60 0.46 0.33 0.15

Standard errors in parentheses, clustered by industry.  All regressions using WES data use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4)

FE FE FE FE

Dataset: WES Employer WES Employer WES Employer WES Employer

Sample: Full Matched Full Matched

Dependent variable

(strategic importance): 

Reducing labor 

costs

Reducing labor 

costs

Improving 

product/service 

quality

Improving 

product/service 

quality

ln(Total revenues) -0.014 0.118 0.098 0.180
(0.130) (0.322) (0.133) (0.380)

Multi-unit enterprise -0.197 0.192 -0.198 0.629*
(0.121) (0.347) (0.173) (0.374)

Unionized -0.144 -0.743*** -0.336* 0.093
(0.230) (0.209) (0.199) (0.333)

Outsourcing 0.050 0.488 0.094 0.960
(0.178) (0.488) (0.169) (0.590)

ln(Robot capital stock) 0.027 -0.001 0.108*** 0.103***
(0.036) (0.020) (0.013) (0.031)

Year fixed effects Y Y Y Y

Organization fixed effects Y Y Y Y

Observations 8,906 889 8,906 889

Adj R-squared 0.32 0.46 0.38 0.21

Standard errors in parentheses, clustered by industry.  All regressions using WES data use sampling 

weights.  *** p<0.01, ** p<0.05, * p<0.1
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Table 5.  Task allocation regressions, training decisions 

 

Table 6.  Task allocation regressions, choice of production technology 

 

(1) (2) (3) (4) (5) (6)

FE FE FE FE FE FE

Dataset:

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

Sample: Full Matched Full Matched Full Matched

Dependent variable: 

Non-

managerial 

employees

Non-

managerial 

employees Managers Managers

Business 

owners or 

Corp HQ

Business 

owners or 

Corp HQ

ln(Total revenues) -0.003 -0.022 0.003 -0.017 0.027 0.307
(0.019) (0.046) (0.090) (0.066) (0.089) (0.230)

Multi-unit enterprise 0.009 -0.094 -0.021 -0.234 0.110 0.755*
(0.013) (0.095) (0.077) (0.640) (0.104) (0.450)

Unionized -0.041 0.014 -0.070 -0.027 -0.139 0.018
(0.139) (0.015) (0.212) (0.025) (0.173) (0.101)

Outsourcing 0.011 0.121 -0.019 0.066 -0.058 -0.278
(0.028) (0.074) (0.072) (0.300) (0.081) (0.195)

ln(Robot capital stock) 0.074*** 0.077*** -0.077*** -0.080*** 0.003 0.012
(0.011) (0.012) (0.011) (0.012) (0.003) (0.009)

Year fixed effects Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y

Observations 6,173 632 6,173 632 6,173 632

Adj R-squared 0.29 0.84 0.33 0.72 0.39 0.75

Standard errors in parentheses, clustered by industry.  All regressions use sampling weights. *** p<0.01, ** 

p<0.05, * p<0.1

Training decisions

(1) (2) (3) (4) (5) (6)

FE FE FE FE FE FE

Dataset:

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

WES 

Employer

Sample: Full Matched Full Matched Full Matched

Dependent variable: 

Non-

managerial 

employees

Non-

managerial 

employees Managers Managers

Business 

owners or 

Corp HQ

Business 

owners or 

Corp HQ

ln(Total revenues) 0.004 0.006 0.056 -0.131 -0.049 0.365
(0.008) (0.033) (0.072) (0.100) (0.075) (0.262)

Multi-unit enterprise -0.007 -0.010 0.038 -0.498 0.070 0.930***
(0.012) (0.018) (0.066) (0.427) (0.096) (0.344)

Unionized -0.000 0.009 0.231 0.868*** -0.527*** -0.878***
(0.004) (0.009) (0.189) (0.092) (0.181) (0.070)

Outsourcing -0.010 0.024 0.038 0.212 -0.003 -0.324*
(0.019) (0.024) (0.075) (0.250) (0.077) (0.179)

ln(Robot capital stock) -0.000 0.002 -0.069*** -0.077*** 0.075*** 0.082***
(0.000) (0.001) (0.015) (0.012) (0.013) (0.017)

Year fixed effects Y Y Y Y Y Y

Organization fixed effects Y Y Y Y Y Y

Observations 6,173 632 6,173 632 6,173 632

Adj R-squared 0.30 0.09 0.31 0.54 0.33 0.54

Choice of Production Technology

Standard errors in parentheses, clustered by industry.  All regressions use sampling weights. *** p<0.01, ** 

p<0.05, * p<0.1
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Table 7. Span of control and work predictability regressions 

 

Table 8. Performance measurement regressions, WES employer sample 

  

(1) (2)

FE FE

Dataset: WES Employee WES Employee

Dependent variable: Span of control

Work 

Unpredctability

ln(Total employees) 22.532* -0.112
(12.112) (0.317)

Multi-unit enterprise 32.915 0.255
(29.069) (0.270)

Union member -6.911 0.067
(4.560) (0.231)

Outsourcing -4.066 0.325
(5.147) (0.229)

ln(Robot capital stock) 0.342** 0.158**
(0.132) (0.066)

Year fixed effects Y Y

Employee fixed effects Y Y

Observations 11,719 10,969

Adj R-squared 0.15 0.59

Standard errors in parentheses, clustered by industry.  All regressions using 

WES data use sampling weights.  *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3)

FE FE FE

Dataset: WES Employer WES Employer WES Employer

Sample: Full Full Matched

Dependent variable: 

Increase in ability 

to measure 

performance

Strategic priority 

of improving 

measures of 

performance 

Strategic priority 

of improving 

measures of 

performance 

ln(Total revenues) 0.034 0.090 -0.171
(0.047) (0.141) (0.258)

Multi-unit enterprise 0.027 0.167 0.356
(0.088) (0.192) (0.251)

Unionized -0.028 0.039 -0.523***
(0.062) (0.186) (0.120)

Outsourcing -0.011 0.702
(0.142) (0.582)

ln(Robot capital stock) 0.022** 0.076*** 0.119***
(0.011) (0.014) (0.024)

Inverse Mills ratio -0.140**
(0.068)

Organization fixed effects Y Y Y

Year fixed effects Y Y Y

Observations 4,947 8,906 889

Adj R-squared 0.42 0.29 0.59

Standard errors in parentheses, clustered by industry.  Inverse Mills ratio is from first stage probit 

regression predicting organizational change.  All regressions use sampling weights. *** p<0.01, ** 

p<0.05, * p<0.1
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Figure 2. Total employment time-indexed dummy regression coefficient plot, NALMF sample 

 

 
Figure 3. Total manager headcount time-indexed dummy regression coefficient plot,  

WES employer sample 

 

 

 


