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Abstract

We conducted a study to investigate trust in and dependence upon robotic decision support among nurses and doctors

on a labor and delivery floor. There is evidence that suggestions provided by embodied agents engender inappropriate

degrees of trust and reliance among humans. This concern represents a critical barrier that must be addressed before

fielding intelligent hospital service robots that take initiative to coordinate patient care. We conducted our experiment

with nurses and physicians, and evaluated the subjects’ levels of trust in and dependence upon high- and low-quality

recommendations issued by robotic versus computer-based decision support. The decision support, generated through

action-driven learning from expert demonstration, produced high-quality recommendations that were accepted by nurses

and physicians at a compliance rate of 90%. Rates of Type I and Type II errors were comparable between robotic and

computer-based decision support. Furthermore, embodiment appeared to benefit performance, as indicated by a higher

degree of appropriate dependence after the quality of recommendations changed over the course of the experiment. These

results support the notion that a robotic assistant may be able to safely and effectively assist with patient care. Finally, we

conducted a pilot demonstration in which a robot-assisted resource nurses on a labor and delivery floor at a tertiary care

center.
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1. Introduction

Service robots are being increasingly utilized across a wide
spectrum of clinical settings. They are deployed to improve
operational efficiency by delivering and preparing supplies,
materials and medications (Bloss, 2011; DiGiose, 2013; Hu
et al., 2011; Mutlu and Forlizzi, 2008; Özkil et al., 2009).
Existing systems exhibit robust, autonomous capabilities
for navigating from point to point while avoiding obsta-
cles (Murai et al., 2012a,b), and initial concerns regarding
physical safety around people have largely been addressed.
However, these robots are not yet well-integrated into the
healthcare delivery process: they do not operate with an
understanding of patient status and needs, and must be
explicitly tasked and scheduled. This can impose a substan-
tial burden upon the nurse in charge of resource allocation,
or “resource nurse,” particularly within fast-paced hospital
departments, such as the emergency or labor and delivery
units.

Resource nurses are essentially solving an NP-hard
(Bertsimas and Weismantel, 2005) problem on the fly: they
assign resources such as beds (e.g. for triage, in-patient,

recovery, and operating rooms) while subject to upper- and
lower-bound temporal constraints on availability and con-
sidering stochasticity in the timing of patient progression
from one bed type to another. They must also pair patients
with staff nurses, equipment, and resources. The resource
nurse’s job is made feasible because staff nurses under-
stand patients’ statuses and needs and will take initiative
to accomplish some tasks without being explicitly directed.

As the number and types of hospital service robots
increases, these robots must similarly take initiative to pro-
vide a net productivity benefit. The need to explicitly task
many service robots may degrade the performance of a
resource nurse (Chen et al., 2011; Cummings and Guerlain,
2007; Olsen and Wood, 2004), which has implications for
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both patient safety and the well-being of healthcare profes-
sionals (Brandenburg et al., 2015; Kehle et al., 2011; Pizer
and Prentice, 2011; Shipman and Sinsky, 2013).

On the other hand, a robot that autonomously takes ini-
tiative when performing tasks may make poor decisions in
the absence of oversight. Furthermore, decades of research
in human factors cautions against fully autonomous deci-
sion making, as it contributes to poor human situational
awareness and degradation in the human supervisor’s per-
formance (Kaber and Endsley, 1997; Parasuraman et al.,
2000; Sheridan, 2011; Wickens et al., 2010). When inte-
grating machines into human cognitive work ows, an inter-
mediate level of autonomy is preferred (Kaber and Endsley,
1997; Wickens et al., 2010), in which the system provides
suggestions to be accepted or modified by a human super-
visor. Such a system would fall within the “4–6” range
on the 10-point scale of Sheridan’s levels of automation
(Parasuraman et al., 2000).

In prior work (Gombolay et al., 2016b), we investigated
the human factors implications of fielding hospital service
robots that necessarily reason about which tasks to per-
form and when to perform them. In particular, we investi-
gated trust in and dependence upon robotic decision sup-
port among nurses and doctors on a labor and delivery
floor. Studies of human–automation interaction in avia-
tion, another safety-critical domain, have show that human
supervisors can inappropriately trust in and rely upon rec-
ommendations made by automation systems (Dismukes
et al., 2007). For example, numerous aviation incidents have
been attributed to human overreliance on imperfect automa-
tion (Dismukes et al., 2007). Other studies have exam-
ined the effects of changes in system reliability, and found
that this led to suboptimal control allocation strategies and
reduced levels of trust in the relevant systems (Desai et al.,
2013, 2012). There is also evidence that suggestions pro-
vided by embodied agents engender over-trust and inap-
propriate reliance (Robinette et al., 2016). This concern
represents a critical barrier to fielding intelligent hospital
service robots that take initiative to participate with nurses
in decision making.

This paper presents three novel contributions to the fields
of robotics and healthcare. First, through human subject
experimentation with physicians and registered nurses, we
conducted the first known study involving experts work-
ing with an embodied robot on a real-world, complex
decision-making task comparing trust in and dependence
upon robotic- versus computer-based decision support. Pre-
vious studies have focused on novice users and/or simple
laboratory decision tasks (Bainbridge et al., 2011; de Visser
et al., 2012; Kiesler et al., 2008; Leyzberg et al., 2014).
Our findings provide the first evidence that experts per-
forming decision-making tasks appear to be less suscep-
tible to the negative effects of support embodiment, as
trust assessments were similar under both the computer-
based and robotic decision support conditions. Further-
more, embodiment yielded performance gains compared

with computer-based support after the quality of recom-
mendations changed over the course of the experiment.
This provides encouraging evidence that intelligent service
robots can be safely integrated into the hospital setting.

Second, decision support generated through action-
driven learning from expert demonstration produced high-
quality recommendations accepted by nurses and physi-
cians at a compliance rate of 90%. This indicates that a
hospital service robot may be able to learn context-specific
decision strategies and apply them to make reasonable sug-
gestions for which tasks to perform and when. We note that
the learning model was presented in prior work (Gombolay
et al., 2016a). This paper provides a novel demonstration of
the algorithm, providing evidence that machine learning can
be used to effectively learn to emulate the decision-making
process in this healthcare domain.

Finally, based on the previous two findings, we con-
ducted the first test demonstration in which a robot-assisted
resource nurses on a labor and delivery floor in a ter-
tiary care center. Our robot used machine learning com-
puter vision techniques to read the current status of the
labor floor and make suggestions about resource allocation,
and used speech recognition to receive feedback from the
resource nurse. To the best of the authors’ knowledge, this
is the first investigation to field a robotic system in a hos-
pital to aid in the coordination of resources required for
patient care.

We extend our prior work (Gombolay et al., 2016b) in
the following ways. First, we increased our sample size by
41%, from 17 to 24 participants, and report our updated
findings. Specifically, we observed stronger evidence that
Type I and Type II error rates for the computer-based deci-
sion support system are more adversely affected by changes
in advice quality than the error rates for a robotic deci-
sion support system. Second, we conducted post-hoc analy-
sis exploring the participants’ response time (i.e. the time
between the end of both the computer-based and robotic
decision support systems’ spoken recommendations and the
response from the participant) as a function of the systems’
advice quality and embodiment. Third, we include a fuller
presentation of the robotic system fielded at our partner
hospital.

2. Background

Whereas the effects of embodiment on engagement in
social judgment tasks have been studied extensively and
well documented (Bartneck et al., 2009; Kidd and Breazeal,
2004; Kiesler et al., 2008; Takayama and Pantofaru, 2009;
Tapus et al., 2009), the relationship between embodiment
and humans’ levels of trust and dependence is a rela-
tively new area of research (Bainbridge et al., 2011; Kiesler
et al., 2008; Leyzberg et al., 2014). This topic is crucial if
robots are to become more than companions, but advisors
to people.
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In this context, trust is defined as “the attitude that an
agent will help achieve an individual’s goals in a situa-
tion characterized by uncertainty and vulnerability (Lee and
See, 2004),” and dependence is a behavioral measure indi-
cating the extent to which users accept the recommendation
of robots or virtual agents. Measures of dependence are dis-
tinguished according to whether the user makes Type I or
Type II errors (Dixon and Wickens, 2006). “Type I” refers to
reliance, or the degree to which users accept advice from an
artificial agent when it offers low-quality recommendations.
“Type II” refers to the extent to which human users reject
advice from an artificial agent when the advice is of high
quality. The degrees to which a user accepts high-quality
advice and rejects low-quality advice are called “appropri-
ate compliance” and “appropriate reliance,” respectively.

Studies examining the effects of embodiment on trust
and dependence necessarily include objective assessments
of dependence and task performance in addition to subjec-
tive assessment of the user’s trust in the system (Bainbridge
et al., 2011; Bartneck et al., 2009; de Visser et al., 2012;
Kiesler et al., 2008; Leyzberg et al., 2014; Pak et al., 2012).

Bainbridge et al. (2011) conducted an experiment where
participants collaborated with either a physical, embodied
robot or a video of a robot in a book-moving task (i.e. mov-
ing books from one location to another). They found that
participants where more willing to comply with unusual
requests from the physically-present robot than the robot
displayed by video.

Similarly, Leyzberg et al. (2014) conducted experiments
investigating the effects of embodiment. In their study, par-
ticipants were given strategy advice for solving Sudoku-like
puzzles. The authors found that embodiment was associ-
ated with a higher rate of compliance with advice provided
by the robot, and suggested this indicated a greater level of
human trust for an embodied robot.

Finally, Kiesler et al. (2008) found that participants con-
sumed fewer calories after receiving health advice from a
physically embodied robot, as compared with advice from
a video of a robot or an on-screen animated virtual agent.

Studies in human factors and decision support have indi-
cated that increased anthropomorphism also affects user
interactions (de Visser et al., 2012; Kulić et al., 2016; Pak
et al., 2012). Pak et al. (2012) evaluated how the anthro-
pomorphic characteristics of decision support aids assist-
ing subjects answering questions about diabetes influenced
subjective trust and task performance. Their results indi-
cated that younger adults trusted the anthropomorphic deci-
sion aid more, whereas older adults were insensitive to
the effects of anthropomorphism. Moreover, shorter ques-
tion response time (after controlling for accuracy) was
observed in both age groups, suggesting a performance
gain when receiving advice from a more anthropomorphic
aid. In another study, de Visser et al. (2012) varied the
degree of anthropomorphism of a decision support system
while participants performed a pattern-recognition task.
The results indicated that the perceived knowledgeableness

of the system increased with increasing anthropomorphism;
however, their findings on dependence were inconclusive.
Kulić et al. (2016) provided a helpful survey of work in
developing anthropomorphic agents.

The results from studies with embodied robots must
be interpreted with caution because they were primarily
focused on situations in which robots produced reliable and
high-quality recommendations. There is a growing body
of research indicating that the quality of decision support
cannot be relied upon, especially during complex tasks
(Wickens et al., 2013). Negative consequences of humans
blindly depending upon imperfect embodied artificial intel-
ligence have been reported previously: for example, Robi-
nette et al. (2016) conducted experiments in which a robot
guided human participants during a mock emergency res-
cue scenario involving a building fire. All participants fol-
lowed the robot, even when the robot led them down unsafe
routes and/or displayed simulated malfunctions and other
suspicious behavior.

Although there is ongoing work trying to develop formal
methods for safe human–robot interaction (Jansen et al.,
2017; Li et al., 2014), imperfect automation persists, and
dependence upon such imperfect automation presents seri-
ous problems for robotic assistance during safety-critical
tasks. This concern is heightened by results from studies
indicating increased trust in and reliance upon embodied
systems as compared with virtual or computer-based deci-
sion support, suggesting a higher possibility of commit-
ting Type I errors. However, prior studies on embodiment,
trust and dependence were conducted with novices rather
than domain experts performing complex real-world tasks.
This leaves us with founded concerns but also gaps in our
understanding of how human–robot interaction impacts the
decision making of expert resource nurses. In the following
sections, we describe our experiment and present a posi-
tive result for service robots in a hospital setting, with Type
I and Type II error rates comparable with those observed
for computer-based decision support. Furthermore, embod-
iment appeared to improve performance, as indicated by a
higher degree of appropriate compliance when the quality
of advice changed mid-experiment.

3. Experimental investigation

In this section, we describe human-subject experimenta-
tion aimed at comparing trust in and dependence upon
an embodied robot assistant versus computer-based deci-
sion support in a population of physicians and registered
nurses. The participants interacted with a high-fidelity sim-
ulation of an obstetrics department at a tertiary care center.
This simulation provided users the opportunity to assume
the roles and responsibilities of a resource nurse, which
included assigning labor nurses and scrub technicians to
care for patients, as well as moving patients throughout
various care facilities within the department.
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Fig. 1. An experiment participant pictured receiving advice from

the robotic decision support.

We conducted the experiment using a within-subjects
design that manipulated two independent variables: embod-

iment (subjects received advice from either a robot or a
computer) and recommendation quality (subjects received
high- or low-quality advice). Each participant experienced
four conditions, the quality of advice was blocked and the
ordering of the conditions was counterbalanced to mitigate
potential learning effects. Figure 1 depicts the experimental
setup for the embodied condition.

3.1. Hypotheses and measures

H1 Rates of appropriate compliance with and reliance upon

robotic decision support will be comparable to or greater

than those observed for computer-based decision sup-

port. Objective measures of compliance and reliance were
assessed based on the participants’ “accept” or “reject”
responses to each decision support recommendation. Statis-
tics on appropriate compliance, appropriate reliance, Type I
and Type II errors were recorded.

H2 Robotic decision support will be rated more favorably

than computer-based decision support in terms of trust and

other attitudinal measures. Results from numerous stud-
ies have demonstrated that embodied and anthropomorphic
systems are rated more favorably by users than computer-
based interactive systems. We hypothesized that the robotic
system in our study would elicit this favorable response
(H2), while engendering appropriate rates of compliance
and reliance (H1). This would indicate a positive signal for
the successful adoption of a hospital service robot that par-
ticipates in decision making. Subjective measures of trust
and attitudinal response were collected via questionnaires
administered to each participant after each of the four tri-
als. Trust was assessed by a composite rating of seven-point
Likert-scale responses for a commonly used, validated trust
questionnaire (Jian et al., 2000). Other attitudinal questions
were drawn from work by Lee et al. (2006) to evaluate per-
sonality recognition, social responses and social presence
in human–robot interaction, and were responded to on a
10-point Likert scale.

3.2. Materials and setup

We conducted our experiments using a high-fidelity sim-
ulation of a labor and delivery floor. This simulation
had previously been developed through a hospital quality-
improvement project as a training tool over a year-long, rig-
orous design and iteration process that included workshops
with nurses, physicians, and medical students to ensure
the tool accurately captured the role of a resource nurse.
Parameters within the simulation (e.g. patient arrivals, time-
lines on progression through labor) were drawn from med-
ical textbooks and papers and modified through alpha and
beta testing to ensure that the simulation closely mirrored
the patient population and nurse experience at our partner
hospital.

An Aldebaran Nao robot was employed for the embodied
condition (Figure 1). A video of the Nao offering advice to
a participant with speech and co-speech gestures is shown
in Extension 1. Participants received advice through syn-
thesized speech under both the embodied and computer-
based support conditions, using a male voice drawn from
the Mary Text-to-Speech System (MaryTTS) (Schröder and
Trouvain, 2003). The advice was also displayed as text in an
in-simulation pop-up box under both conditions. The sub-
ject clicked a button to accept or reject the advice; these
buttons were not clickable until the narration was complete,
which was independent of whether the advice was provided
from the embodied versus the computer-based system.

3.3. Experimental procedure

Twenty-four physicians and registered nurses, recruited via
email and word-of-mouth, participated in the experiment
(one man and 23 women). This gender ratio is a representa-
tive sample of our partner OB/GYN department: ∼ 70% of
the attending physician population and 100% of the nurses
and resident populations are female. The ratio of female-
to-male labor nurses in the United States is approximately
9.5 : 1 (and higher in our state), according to data collected
by The Kaiser Family Foundation.1

First, participants provided consent for the experiment
and watched an 8-minute tutorial video describing the labor
and delivery floor simulation. The tutorial video is available
as Extension 2. Participants were instructed to play the sim-
ulation four times, with each iteration lasting 10 minutes,
simulating a total of 4 hours on the labor floor. The com-
puter or embodied system would interject during the simu-
lation to offer recommendations on which nurse should care
for which patient, as well as on patient room assignments.
Participants were asked to accept or reject the advice based
on their own judgment. They were not informed whether
the robotic or virtual decision support coach was provid-
ing high- or low-quality advice. Finally, after each of the
four trials, participants were asked to rate their subjective
experience via a set of Likert-scale questions.
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4. Toward decision support: formulation of

the resource nurse’s decision-making

problem

This section provides a formal representation of the
resource nurse’s decision-making problem. The following
section describes how we implemented the decision support
based on this formulation.

A resource nurse must solve a problem of task alloca-
tion and schedule optimization with stochasticity in the
number and types of patients and the duration of tasks.
A task τi represents the set of steps required to care for
patient i, and each τ

j
i is a given stage of labor for that

patient. Stages of labor are related by stochastic lower-
bound constraints W〈

τ
j
i ,τ

y
x

〉, requiring the stages to progress

sequentially. There are stochastic time constraints, Dabs

τ
j
i

and

Drel〈
τ

j
i ,τ

y
x

〉, relating the stages of labor to account for the inabil-

ity of resource nurses to perfectly control when a patient
will move from one stage of labor to the next. Arrivals of
τi (patients) are drawn from stochastic distributions. The
model considers three types of patients: patients scheduled
for cesarean section, patients scheduled for labor induc-
tion, and unscheduled patients. The sets W〈

τ
j
i ,τ

y
x

〉, Dabs

τ
j
i

, and

Drel

〈τi,τj〉
are dependent upon patient type.

Labor nurses are modeled as agents with a finite capac-
ity to process tasks in parallel, where each subtask requires
a variable amount of this capacity. For example, a labor
nurse may generally take care of a maximum of two
patients simultaneously. If the nurse is caring for a patient
who is “full and pushing” (i.e. the cervix is fully dilated
and the patient is actively trying to push out the baby)
or in the operating room, the nurse may only care for
that patient.

Rooms on the labor floor (e.g. a labor room, an oper-
ating room, etc.) are modeled as resources, which process
subtasks in series. Agent and resource assignments to sub-
tasks are pre-emptable, meaning that the agent and resource
assigned to care for any patient during any step in the
care process may be changed over the course of executing
that subtask.

In this formulation, At a

τ
j
i

∈ {0, 1} is a binary decision

variable for assigning agent a to subtask τ
j
i for time epoch

[t, t +1). Gt a

τ
j
i

is an continuous decision variable for assign-

ing a certain portion of the effort of agent a to subtask τ
j
i

for time epoch [t, t + 1). Here Rt r

τ
j
i

∈ {0, 1} is a binary deci-

sion variable for whether subtask τ
j
i is assigned resource r

for time epoch [t, t + 1), Hτi
∈ {0, 1} is a binary decision

variable for whether task τi and its corresponding subtasks
are to be completed, U

τ
j
i

specifies the effort required from

any agent to work on τ
j
i , and s

τ
j
i
, f

τ
j
i

∈ [0, ∞) are the start

and finish times, respectively, of τ
j
i .

The equations

min fn

(
{ At a

τ
j
i

}, { Gt a

τ
j
i

}, { Rt r

τ
j
i

}, {Hτi
}, {s

τ
j
i
, f

τ
j
i
}

)
(1)

∑

a∈A

At a

τ
j
i

≥ Hτi
, ∀τ

j
i ∈ τ , ∀t (2)

0 =

(
Gt a

τ
j
i

− U
τ

j
i

)
At a

τ
j
i

Hτi
, ∀τ

j
i ∈ τ , ∀t (3)

∑

τ
j
i ∈τ

Gt a

τ
j
i

≤ Ca, ∀a ∈ A, ∀t (4)

∑

r∈R

Rt r

τ
j
i

≥ Hτi
, ∀τ

j
i ∈ τ , ∀t (5)

∑

τ
j
i ∈τ

Rt r

τ
j
i

≤ 1, ∀r ∈ R, ∀t (6)

f
τ

j
i
− s

τ
j
i
≤ ub

τ
j
i
, ∀τ

j
i ∈ τ (7)

f
τ

j
i
− s

τ
j
i
≥ lb

τ
j
i
, ∀τ

j
i ∈ τ (8)

sτ
y
x

− f
τ

j
i
≥ W〈τi,τj〉, ∀τi, τj ∈ τ |, ∀W〈τi,τj〉 ∈ TC (9)

fτ y
x

− s
τ

j
i
≤ Drel

〈τi,τj〉
, ∀τi, τj ∈ τ |∃Drel

〈τi,τj〉
∈ TC (10)

f
τ

j
i
≤ Dabs

τi
, ∀τi ∈ τ |∃Dabs

τi
∈ TC (11)

represent a mixed-integer non-linear program over these
variables. We address the objective function in Section 5.
A mathematical program solver would seek to minimize
the application-specific objective function in Equation (1)
subject to the constraints in Equations (2)–(11). Equation
(2) enforces that each subtask τ

j
i during each time epoch

[t, t + 1) is assigned one agent. Equation (3) ensures that
each subtask τ

j
i receives a sufficient portion of the effort of

its assigned agent a during time epoch [t, t + 1). Equation
(4) ensures that agent a is not oversubscribed.

Equation (5) ensures that each subtask τ
j
i of each task

τi to be completed (i.e. Hτi
= 1) is assigned one resource

r. Equation (6) ensures that each resource r is assigned to
only one subtask during each epoch [t, t + 1). Equations
(7) and (8) requires the duration of subtask τ

j
i to be less

than or equal to ub
τ

j
i

and at least lb
τ

j
i

units of time, respec-

tively. Equation (9) requires that τ
y
x occurs at least W〈

τ
j
i ,τ

y
x

〉

units of time after τ
j
i . Equation (10) requires that the dura-

tion between the start of τ
j
i and the finish of τ

y
x is less than

Drel〈
τ

j
i ,τ

y
x

〉. Equation (11) requires that τ
j
i finish before Dabs

τ
j
i

units of time have expired since the start of the schedule.
The stochasticity of the problem arises from the uncer-

tainty in the upper and lower bound of the durations,
( ub

τ
j
i
, lb

τ
j
i
), of each of the steps in caring for a patient;

the number and types of patients, τ ; and the temporal con-
straints, TC, relating the start and finish of each step. These
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variables are a function of the resource and staff alloca-
tion variables Rt a

τ
j
i

and At a

τ
j
i

, and patient task state 3
τ

j
i
,

which includes information on patient type (i.e. patients
presenting with scheduled induction, scheduled cesarean
section, or acute unplanned anomaly), gestational age (i.e.
number of days and weeks pregnant), gravida (i.e. num-
ber of pregnancies), parity (i.e. number of live births),
membrane status (i.e. intact or ruptured), anesthesia sta-
tus (i.e. whether, and which type of, anesthesia has been
administered), cervix status, including dilation (i.e. width
of cervical opening), station (i.e. location of baby rela-
tive to cervix, depth-wise), and effacement (i.e. degree to
which the cervix has decreased in length), time of last exam
and, finally, the presence of any co-morbidities. Formally,(
{ub

τ
j
i
, lb

τ
j
i
|τ

j
i ∈ τ }, τ , TC

)
∼ P( { Rt a

τ
j
i

, At a

τ
j
i

, 3
τ

j
i
, ∀t ∈

[0, 1, . . . , T]}).
We note that the constraints represented in Equations (2)–

(11) are linear except for Equation (3), which is a nonlin-
ear, cubic, equality constraint. As nonlinear constraints are
more difficult to solve, it may be desirable to linearize such
equations. We can substitute the nonlinear equality con-
straint in Equation (3) with two linear, non-strict inequality
constraints, as shown in

Gt a

τ
j
i

− U
τ

j
i
≤ M

(
2 − At a

τ
j
i

− Hτi

)
, ∀τ

j
i ∈ τ , ∀t (12)

Gt a

τ
j
i

− U
τ

j
i
≥ M

(
At a

τ
j
i

+ Hτi
− 2

)
, ∀τ

j
i ∈ τ , ∀t (13)

using the big-M method, where M is a large, positive num-
ber. For further information regarding the big-M method,
please consult Winston et al. (2003).

4.0.1. Computational complexity. Mathematical pro-
grams, such as that outlined in Equations (1)–(11), are
typically solved exactly with a branch-and-bound search
technique due to the presence of integer variables. The
computational complexity of a branch-and-bound search
for a solution to the assignment of decision variables
would be dominated by searching over assignments to the
integer decision variables, At a

τ
j
i

∈ {0, 1}, { Rt r

τ
j
i

} ∈ {0, 1},

and {Hτi
} ∈ {0, 1}. Considering a scenario with n tasks, m

subtasks per task, a agents (e.g. nurses), r resources (e.g.
rooms), and a time horizon of T units of time, the compu-
tational complexity for solving the constraint portion of the
formulation (i.e. Equations (2)–(11)) would be of the order

O

(
2

| At a

τ
j
i

|| Rt r

τ
j
i

||Hτi
|
)

= O
(
2(anmT)(rnmT)(n)

)
= O

(
2an3m2T2r

)
.

Mathematical programs, such as that outlined in Equa-
tions (1)–(11), are typically solved exactly with a branch-
and-bound search technique due to the presence of inte-
ger variables. The computational complexity of a branch-
and-bound search for a solution to the assignment of
decision variables would be dominated by searching over

assignments to the integer decision variables, At a

τ
j
i

∈

{0, 1}, { Rt r

τ
j
i

} ∈ {0, 1}, and {Hτi
} ∈ {0, 1}. Considering a

scenario with n tasks, m subtasks per task, a agents (e.g.
nurses), r resources (e.g. rooms), and a time horizon of
T units of time, the computational complexity for solv-
ing the constraint portion of the formulation (i.e. Equations

(2)–(11)) would be of the order of O

(
2

| At a

τ
j
i

|| Rt r

τ
j
i

||Hτi
|
)

=

O
(
2(anmT)(rnmT)(n)

)
= O

(
2an3m2T2r

)
.

In the typical example for the Labor and Delivery Floor
we consider in this paper, one might expect a stressful sce-
nario to include approximately n = 20 patients each with
m = 3 stages of labor, a = 10 nurses, r = 20 rooms, a
planning horizon of 12 hours with an event rate of one event
every 10 minutes (i.e. T = 12 hours ∗ 1 event

10 minutes ∗ 60 minutes
1 hour =

72). Under such a scenario, the computational complexity
of the search for a solution considering only the constraints,

would be O
(

210∗203∗32∗722∗20
)

= O( 274,649,600,000).

4.1. The role of the resource nurse

The functions of a resource nurse are to assign nurses to
take care of labor patients and to assign patients to labor
beds, recovery room beds, operating rooms, antepartum
ward beds, or postpartum ward beds. The resource nurse has
substantial flexibility when assigning beds, and their deci-
sions will depend upon the type of patient and the current
status of the unit in question. They must also assign scrub
technicians to assist with surgeries in operating rooms,
and call in additional nurses if required. The correspond-
ing decision variables for staff assignments and room/ward
assignments in the above formulation are At a

τ
j
i

and Rt r

τ
j
i

,

respectively.
The resource nurse may accelerate, delay, or cancel

scheduled inductions or cesarean sections in the event that
the floor is too busy. Resource nurses may also request
expedited active management of a patient in labor. The deci-
sion variables for the timing of transitions between the var-
ious steps in the care process are described by s

τ
j
i

and f
τ

j
i
.

The commitments to a patient (or that patient’s procedures)
are represented by Hτi

.
The resource nurse may also reassign roles among

nurses: for example, a resource nurse may pull a nurse from
triage or even care for patients herself if the floor is too
busy; or if a patient’s condition is particularly acute (e.g.
the patient has severe preeclampsia), the resource nurse
may assign one-to-one nursing. The level of attentional
resources a patient requires and the level a nurse has avail-
able correspond to variables U

τ
j
i

and Gt a

τ
j
i

, respectively. The

resource nurse makes their decisions while considering cur-
rent patient status 3

τ
j
i
, which is manually transcribed on a

whiteboard, as shown in Figure 2.
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Fig. 2. A resource nurse must assimilate a large variety and volume of information to effectively reason about resource management

for patient care.

5. Implementation of decision support

There are two fundamental challenges to providing decision
support guidance through direct solution of the optimiza-
tion problem depicted above. First, the computational com-
plexity of the problem precludes production of real-time
solutions. The computational complexity of completely
searching for a solution satisfying constraints in Equations

(2)–(11) is given by O
(

2|A||R|T2
C|A|T

a

)
, where |A| is the

number of agents, with each agent possessing an integer-
processing capacity of Ca; there are n tasks τi, each with
mi subtasks; |R| resources; and an integer-valued planning
horizon of T units of time. In practice, there are ∼ 10
nurses (agents) who can care for up to two patients at a
time (i.e. Ca = 2, ∀a ∈ A), 20 different rooms (resources)
of varying types, 20 patients (tasks) at any one time and
a planning horizon of 12 hours or 720 minutes, yielding

a worst-case complexity of ∼ 210∗20∗7202
210∗720 ≥ 2106

,
which is computationally intractable.

The second challenge to decision support guidance is that
the precise form of the objective function (Equation (1))
that resource nurses optimize for is unknown. Prior work
has indicated that domain experts are adept at describing
the (high-level, contextual, and task-specific) features used
in their decision making, yet it is more difficult for experts
to describe how they reason about these features (Cheng
et al., 2006; Raghavan et al., 2006). As such, we applied
a machine learning technique to learn a set of heuristic
scheduling policies from demonstrations of resource nurse
decision making. We then applied these learned policies to
produce advice for the computer-based and robotic decision
support systems.

5.1. Learning from resource nurses

In this section, we present a framework for learning (via
expert demonstration) a set of heuristics for resource allo-
cation and scheduling that emulates resource nurse deci-
sion making. For the purposes of our experiment, we
focused on learning a policy for recommending which nurse

should care for which patient, and for making patient room
assignments. We demonstrate in our results section that
this technique produced high-quality recommendations, as
evidenced by an overall 90% accept rate of high-quality
advice.

We applied action-driven learning rather than explic-
itly modeling a reward function and relying upon dynamic
programming or constraint solvers. This latter approach
(Abbeel and Ng, 2004; Konidaris et al., 2011; Odom and
Natarajan, 2015; Vogel et al., 2012; Zheng et al., 2014;
Ziebart et al., 2008) can quickly become computationally
intractable for problems involving hundreds of tasks and
tens of agents due to memory limitations. Approximate
dynamic programming approaches exist that essentially
reformulate the problem as regression (Konidaris et al.,
2011; Mnih et al., 2015), yet the amount of data required
to regress over a large state space remains challenging, and
Markov decision process (MDP)-based task allocation and
scheduling solutions exist only for simple problems (Wu
et al., 2011; Wang and Usher, 2005; Zhang and Dietterich,
1995).

Instead, we applied an apprenticeship scheduling algo-
rithm (Gombolay et al., 2016a) inspired by work in Web
page ranking (Jin et al., 2008; Pahikkala et al., 2007). The
model representation, a graph with nodes and directed arcs,
provides a suitable analogy for capturing the complex tem-
poral dependencies (i.e. precedence, wait, and deadline con-
straints) relating tasks within a scheduling problem. The
approach uses pairwise comparisons between the actions
taken (e.g. scheduling agent a to complete task τi at time
t) and the set of actions not taken (e.g. unscheduled tasks
at time t) to learn relevant model parameters and schedul-
ing policies demonstrated by the training examples. One
key advantage of this pairwise approach is that it is non-
parametric, in that the cardinality of the input vector is not
dependent upon the number of tasks (or actions) that can be
performed in any instance.

Consider a set of task–resource–agent

〈
τ

j
i , Ra

τ
j
i

, Aa

τ
j
i

〉

assignments, denoted πq ∈ 5. Each assignment πq has
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a set of associated features, γπq , indicating patient type
(i.e. patients presenting with scheduled induction, sched-
uled cesarean section, or acute unplanned anomaly), bed
type, whether or not the bed is occupied, and staff status
(i.e. the number of patients for which the staff member
is serving as primary nurse, covering nurse, baby nurse,
or scrub technician). Next, consider a set of m observa-
tions, O = {O1, O2, . . . , Om}. Each observation consists of a
feature vector describing the task–resource–agent tuple πq

scheduled by the expert demonstrator (including a null task
τ∅, resource r∅ or agent a∅ if no task, resource or agent was
scheduled). The goal is to then learn a policy that correctly
determines which task–resource–agent tuple πq to schedule
as a function of feature state.

To learn to correctly assign the subsequent task to the
appropriate resource and/or agent, we transform each obser-
vation Om into a new set of observations by performing
pairwise comparisons between the scheduled assignment πq

and the set of assignments s that were not scheduled:

rankθm

〈πq,πr〉
:=
[
γπq − γπr

]
, ym

〈πq,πr〉
= 1,

∀πr ∈ 5\πq, ∀Om ∈ O|πq scheduled in Om (14)
rankθm

〈πr ,πq〉
:=
[
γπr − γπq

]
, ym

〈πr ,πq〉
= 0,

∀πr ∈ 5\πq, ∀Om ∈ O|πq scheduled in Om (15)

Equation (14) creates a positive example for each obser-
vation in which a πq was scheduled. This example con-
sists of the input feature vector, φm

〈πq,πr〉
, and a positive

label, ym

〈πq,πr〉
= 1. Each element of the input feature

vector φm

〈πq,πr〉
is computed as the difference between the

corresponding values in the feature vectors γπq and γπr ,
describing scheduled assignment πq and unscheduled task
πr. Equation (15) creates a set of negative examples with
ym

〈πr ,πq〉
= 0. For the input vector, we take the difference of

the feature values between unscheduled assignment πr and
scheduled assignment πq.

We applied these observations to train a decision-tree
classifier fpriority( πq, πr) ∈ {0, 1} to predict whether it is bet-
ter to make the task–resource–agent assignment πq as the
next assignment rather than πr. Given this pairwise classi-
fier, we can determine which single assignment πq* is the
highest-priority assignment according to

π̂q∗ = arg max
πq∈5

∑

πq∈5

fpriority

(
πq, πr

)
(16)

by determining which assignment is most often of higher
priority in comparison with the other assignments in 5.

In our experiments, we directly applied fpriority( πq, πr)
to generate high-quality recommendations. We generated
low-quality advice using two methods. The first method rec-
ommended the action that minimized Equation (16), instead
of maximizing it. This approach would typically generate
infeasible advice (e.g. to move a patient to a room that

is currently occupied). A second method was applied to
offer low-quality but feasible advice (e.g. to assign a post-
operating patient to triage). This was achieved by evaluating
Equation (16) after filtering the space of possible actions to
include only feasible actions (per the constraints in Equa-
tions (2)–(11)). As examples, advice given as high-quality,
low-quality feasible, and low-quality infeasible could be,
respectively, to “assign a new patient to a nurse who cur-
rently has no patients under her care;” “assign a new patient
to a nurse who already has patients under her care;” and
“assign a new patient to an occupied room.” We note that
recommendations for the low-quality condition were pro-
duced by randomly selecting between the infeasible and
feasible methods to mitigate ordering effects.

The dataset used for training was generated by seven
resource nurses working with the simulation for a total of
2 1

2 hours, simulating 60 hours of elapsed time on a real
labor floor. This yielded a dataset of more than 3,013 indi-
vidual decisions. None of the seven resource nurses who
contributed to the dataset participated in the experiment.

As we note throughout the presentation of the experi-
ment, a high rate of acceptance of advice (e.g. advice given
in the “high-quality advice” condition) does not imply the
advice is, in fact, high quality. Nonetheless, we do believe
there is evidence to support that we present participants
with a meaningful gradation of advice quality. First, the
algorithm has been demonstrated to learn a high-quality
representation of human decision-making in prior work
(Gombolay et al., 2016b). Second, we internally validated
the learned policy, fpriority( πq, πr), through expert review
with a team of obstetricians and labor and delivery pro-
fessionals. Third, we investigated the various strategies for
decision-making of the resource nurses in our dataset in a
recent paper (i.e. Molina et al. (2018) published within the
medical community. For this paper, we internally validated
that the dataset accurately captured the decision-making
process present in labor and delivery operations.

6. Results

We report statistical testing of our hypotheses here. We
defined statistical significance at the α = 0.05 level.

6.1. Analysis and discussion of H1

Objective measures of compliance and reliance were
assessed based on the participant’s “accept” or “reject”
responses to each decision support recommendation. Statis-
tics for hits, misses, false alarms, and correct rejections are
reported in Table 1. We note that the robot- and computer-
based decision support systems provided a total of 412
and 417 suggestions, respectively, across 24 participants
and two conditions (i.e. high- and low-quality advice) per
participant for an average of 8.58 and 8.69 suggestions,
respectively, per participant per condition.
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Table 1. Confusion matrix for participants shown as a raw count

and percentage of the whole.

Robotic Response
Decision support Accept Reject

Advice quality
High 188 ( 45.6%) 20 ( 4.9%)
Low 26 ( 6.3%) 178 ( 43.2%)

Computer Response
Decision support Accept Reject

Advice quality
High 176 ( 42.2%) 27 ( 6.5%)
Low 21 ( 5.0%) 193 ( 46.2%)

Table 2. Rates of correct “accept” and “reject” responses (and the

corresponding Type I and Type II error rates), as well as the PPV

and NPV for participants, depicted as percentages. Note that the

rate of correct “accept” is one minus than the Type I error rate, and

the rate of correct “reject” is one minus than the Type II error rate.

Robot Computer p-value
Correct Accept Rate 90.4% 86.7%

0.241
(Type I Error Rate) (9.6%) (13.3%)
Correct Reject Rate 87.3% 90.2%

0.343
(Type II Error Rate) (12.7%) (9.8%)
PPV 87.9% 89.3% 0.635
NPV 89.9% 87.7% 0.483

As shown in Table 2, results from a z-test for two pro-
portions indicated no statistically significant difference in
the Type II error rates between the robotic (pR = 12.7%)
and computer-based (pC = 9.8%) decision support con-
ditions (z = 0.949, p = 0.343) nor in the Type I error
rates (pR = 9.6%, pC = 13.3%, z = 1.174, p = 0.241).
For reference, the corresponding rates of correct “accept”
responses to high-quality advice (i.e. 1 minus the Type II
error rate) are pR = 90.4%, pC = 86.7%, and the corre-
sponding rates of correct “reject” responses to low-quality
advice (i.e. 1 minus the Type I error rate) are pR = 87.3%,
pC = 90.2%. Further, results from a z-test for two pro-
portions indicated no statistically significant difference in
positive predictive value (PPV) between the robotic (pR =

87.9%) and computer-based (pC = 89.3%) decision sup-
port conditions (z = 0.474, p = 0.635) nor in negative
predictive value (NPV) between the robotic (pR = 89.9%)
and computer-based (pC = 87.7%) decision support condi-
tions (z = 0.702, p = 0.483). Results from a two one-sided
tests (TOST) equivalence test using two z-tests for two pro-
portions indicated that the Type I error rate, PPV, and NPV
were statistically equivalent between the robotic and virtual
decision support conditions.

We also analyzed the rates of Type I and Type II errors
in the second and third trials, upon transition in advice
quality (Table 3). Results from a z-test for two proportions
indicated a significant difference in the rate of incorrect
“accept” of low-quality advice (Type I error) across the sec-
ond and third trials for the computer-based decision support
(6.7% versus 17.6%, z = 1.793, p = 0.036), but not for the

Table 3. Correct accept and reject decisions made with computer-

based (computer-accept, computer-reject) versus robotic (robot-

accept, robot-reject) decision support, as a function of trial num-

ber, depicted as a raw count and percentage of the whole.

Trial number
Bad advice Good advice
1 2 3 4

Computer-accept 5 ( 10.4%) 4 ( 6.7%) 41 ( 82.0%) 49 ( 92.5%)
Robot-accept 9 ( 17.6%) 5 ( 9.6%) 49 ( 87.5%) 44 ( 93.6%)

Trial number

Good advice Bad advice
1 2 3 4

Computer-reject 7 ( 16.3%) 7 ( 12.3%) 42 ( 82.4%) 52 ( 94.5%)
Robot-reject 8 ( 14.8%) 2 ( 3.9%) 42 ( 85.7%) 47 ( 90.4%)

robotic support (9.6% versus 16.0%, p = 0.461). In other
words, participants’ rates of Type I error associated with
computer-based support increased significantly when they
had received high-quality advice in the previous trial.

Moreover, findings from a contrast test indicated that
the average Type I error rates among participants under
the computer-based decision support condition after transi-
tioning from high- to low-quality advice (pafter

C = 18.4%)
were the highest among the set of Type I error rates for
both the robotic and computer-based decision support sys-
tems across the second and third trials (pbefore

C = 9.7%,

p
after

C = 18.4%, p
before
R = 9.7%, p

after
R = 14.4%), p = 0.002.

In other words, rates of Type I errors were highest when par-
ticipants had received high-quality advice during the previ-
ous trial and were now receiving low-quality advice from
the computer-based decision support system.

Similarly, contrast test results showed that the average
Type II error rates among participants under the computer-
based decision support condition after transitioning from
low- to high-quality advice (pafter

C = 22.6%) were highest
among the set of Type II error rates for both the robotic
and computer-based decision support systems across the
second and third trials (pbefore

C = 10.6%, p
after

C = 22.6%,

p
before
R = 3.2%, p

after
R = 12.0%), p = 0.002. In other words,

rates of Type II errors were highest when participants had
received low-quality advice in the previous trial and were
now receiving high-quality advice from the computer-based
decision support system.

6.2. Analysis and discussion of H2

A composite measure of trust was computed, as in the work
by Jian et al. (2000). Results from a repeated-measures
analysis of variance (RANOVA) demonstrated a statisti-
cally significant increase in the average rating for the deci-
sion support system under the high-quality advice condition
(M = 5.17) as compared with the low-quality condition
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Table 4. Subjective measures: post-trial questionnaire items for

which participants’ responses were statistically significantly dif-

ferent across experimental conditions. Responses to Questions

1–5 were on a 7-point (reverse) scale; Questions 4–10 were on

a 10-point scale.

Trust and Embodiment in Human–Robot Interaction

1. The system is deceptive.
2. I am suspicious of the system’s intent, action, or outputs.
3. The system provides security.
4. Distant/close.
5. I think this decision support coach could be a friend of mine.
6. I think I could have a good time with this decision support
coach.
7. People will find it interesting to use this decision support
coach.
8. People will find this decision support coach attractive.
9. While you were interacting with this decision support coach,
how much did you feel as if it were a social being?
10. Unsociable/sociable.

(M = 3.22), with a standard error estimate of SD = 9.551,
(F( 1, 23) = 82.848, p < 0.001).

However, a RANOVA yielded no statistically significant
difference in user trust between the robotic (M = 4.22)
and computer-based (M = 4.16) embodiment conditions,
with a standard error estimate of SD = 0.264, (F( 1, 23) =

0.070, p = 0.707). Results from a TOST equivalence test,
using two t-tests, indicated that subjects’ trust ratings for the
computer-based and robotic support were within one point
of each other on a seven-point Likert scale.

We observed significant differences in the attitudinal
assessment of the robotic versus computer-based decision
support conditions for Questions 4–10 in Table 4, indicating
that participants rated the robotic system more favorably.
The result was established using a two-way omnibus Fried-
man test, followed by pairwise Friedman tests. The test
statistics for the pairwise Friedman tests were p = 0.033,
p = 0.048, p = 0.038, p < 0.001, p = 0.046, p = 0.023,
and p = 0.002, respectively. Strikingly, there was not a sin-
gle question (out of 37) for which participants rated the
computer-based decision support significantly better than
the robotic support.

We also found that the subjective perception of the char-
acter of the robot was significantly less sensitive to tran-
sitions in advice quality than the computer-based decision
support. We computed the frequency with which the rat-
ings of one embodiment condition subsumed the other,
and vice versa. Specifically, we defined xR,L as the Likert-
scale rating for a given question and a particular partic-
ipant under the robotic low-quality advice condition, and
likewise for the high-quality condition, xR,H . The variables
xC,L and xC,H were similarly defined for the computer-
based low- and high-quality conditions. The robotic con-
dition was defined as subsuming the computer-based
condition if either min( xR,L, xR,H ) ≤ min( xC,L, xC,H ) ≤

max( xC,L, xC,H ) < max( xR,L, xR,H ) or min( xR,L, xR,H ) <

min( xC,L, xC,H ) ≤ max( xC,L, xC,H ) ≤ max( xR,L, xR,H ), and
vice versa for the computer-based condition subsuming the
robotic condition. A χ2 test indicated that the participants’
subjective evaluation according to Questions 1, 2, and 3
(p = 0.047, 0.046, and 0.047, respectively) changed more
significantly under the computer-based condition than the
robotic condition. There were no questions for which the
response changed more significantly under the robotic con-
dition versus the computer-based condition. In other words,
the subjective assessment of the robot was more robust to
advice quality changes than the computer-based decision
support. Further investigation is warranted to determine
whether these effects persist over time as users habituate
to interaction with the robot.

6.3. Post-hoc analysis of reaction times

In post-hoc analysis, we investigated the effects of the
mode of decision support and the quality of advice given
by the decision support system on participants’ reaction
time to that advice. We conducted a two-factor, RANOVA
to test whether participants took more time responding to
advice as a function of advice quality (i.e. high versus
low quality) and the mode of support (i.e. robotic versus
computer-based).

The result of the RANOVA suggested a relationship
(F( 1, 720) = 3.15, p = 0.077) between advice quality
and participants’ response times. Specifically, participants
took 2.351±2.280 seconds when responding to low-quality
advice versus 2.048 ± 2.148 seconds when responding to
high-quality advice, corresponding to a 15% increase in
time taken to respond to low-quality advice.

The evidence provided by the RANOVA was less com-
pelling for the relationship between the mode of deci-
sion support and participants’ response times (F( 1, 720) =

0.278, p = 0.598): participants took 2.135 ± 2.065 seconds
when responding to computer-based decision support ver-
sus 2.267 ± 2.148 seconds when responding to the robotic
system, corresponding to a 19% increase in time taken.
However, a possible relationship between operator response
time and embodiment is an area for future work.

6.4. Discussion

The statistical analysis provided in the results section show
that the Type I and Type II error rates were comparable
between robotic and computer-based decision support sys-
tems. Furthermore, embodiment appeared to offer perfor-
mance gains, as indicated by lower error rates after the
quality of recommendation changed mid-experiment. These
encouraging findings provide evidence that a robotic assis-
tant may be able to participate in decision making with
nurses without eliciting inappropriate dependence. One
potential rationale for these results is that experts may be
less susceptible to the negative effects of embodiment, as
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Fig. 3. (Top) An anonymized photo of a labor floor dashboard,

taken by the camera from a Nao robot. (Middle) The same image

after the preprocessing and edge detection steps are applied. (Bot-

tom) The segmentation recovered after the Hough transform and

postprocessing steps are applied.

has been documented previously among experienced users
interacting with anthropomorphic agents (Pak et al., 2012).
In addition, note that our study was conducted with a sta-
tionary robot, with movement limited to co-speech gestures.
Further investigation is warranted for situations in which
experts interact with mobile service robots that participate
in decision making.

The statistical analysis for H1 focuses on determining
whether there are differences in the Type I and Type II
error rates between the robot- and computer-based decision
support systems. We found statistically significant differ-
ences between these error rates when a condition of low-
or high-quality advice was followed by the opposite condi-
tion. We found that the transition point results in an inflated
Type I or II error rate for participants working with the
computer-based decision support system as opposed to the
robot-based decision support system. It is notable that this
statistically significantly difference arises through change
in the embodiment of the decision support system, and that
participants working with the computer-based decision sup-
port experience higher rates of inappropriate compliance

and reliance when the advice quality changes. The possi-
ble presence of even a transient inflation of error rates in a
safety-critical domain, such as a labor and delivery ward,
is potentially significant and warrants careful evaluation.
Future studies will be required to assess whether this effect
is transient or whether participants re-calibrate to the new
advice quality over time.

Our findings support H2 in that the robotic system
was rated more favorably on attitudinal assessment than
computer-based decision support, even as it engendered
appropriate dependence. It is inevitable that a service robot
will occasionally make poor-quality suggestions, and we
positively note that the robot engendered greater tolerance
of errors than the computer-based decision support. These
results indicate a positive signal for successful adoption
of a robot that participates in a resource nurse’s decision
making.

In our post-hoc analysis studying the effect of advice
quality and embodiment and reaction time, the results were
mixed. We found positive evidence that reaction times were
degraded when participants were evaluating low-quality
advice. These data are supported by prior work in neu-
roscience by Goodyear et al. (2016) examining advice
response time as a function of advice quality. On the other
hand, although the average reaction time for considering
advice from the robot-based decision support system were
delayed as opposed to the computer-based decision sup-
port system, the statistical analysis was not significant.
This inconclusive result was also found in prior work by
Goodyear et al. (2016). As such, we have established a new
hypothesis, to be tested in a future experiment. First, we
hypothesize that operator response time is negatively pro-
portional to advice quality. Second, embodied (i.e. robotic)
decision support elicits more attention, as measured by
a longer response time, compared with un-embodied (i.e.
computer-based) support.

There is also a noteworthy correspondence between our
observation that the robot engendered greater tolerance of
errors than a computer-based decision support and prior
work in shared decision-making authority in human–robot
teaming (Gombolay et al., 2015) columinating from a series
of prior experimental investigations (Gombolay et al., 2014;
Gombolay and Shah, 2014a,b; Gombolay et al., 2013). In
our experiment, we found that participants’ subjective per-
ception of a robotic decision support system varied less than
that of a computer-based system as a function of the quality
of advice offered by that system. In related work, Gombolay
et al. (2015) investigated a scenario in which a human would
work on a manufacturing team with the participant, a sec-
ond human teammate (i.e. a confederate), and a third agent,
either another human or a robot. The team would work
under one of three conditions: (1) the participant would
allocate tasks to the team (i.e. determine which team mem-
ber would complete which tasks); (2) the third agent would
allocate tasks to the team; or (3) the participant and the third
agent would share allocation responsibility. Gombolay et al.
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(2015) found that participants’ subjective perception of the
value of the third agent varied more significantly when that
agent was a robot than a human. In other words, the human
agent engendered a greater level of tolerance for the task
allocation schema than the robotic agent. In this paper, we
report that a robotic agent engendered greater tolerance for
decision support errors than did a computer-based system.
Although the factors in these experiments differ, there is
interesting evidence to support the idea that anthropomor-
phizing affects the tolerance or variability of an operator’s
perception of that agent. As such, we establish the following
hypothesis for future work: As an agent becomes increas-
ingly anthropomorphic, a participant’s perception of that
agent grows increasingly tolerant of its behavior or role in
the interaction.

7. Pilot demonstration of a robotic assistant on

the labor and delivery floor

Based on the positive results of our experiment, we con-
ducted a pilot demonstration in which a robot-assisted
resource nurses on a labor and delivery floor at a tertiary
care center.

7.1. Robot system architecture

The system comprised three primary subsystems providing
the vision, communication, and decision support capabili-
ties, respectively. Figure 4 depicts a system diagram.

7.1.1. Vision system. In our experiments, the statuses of
patients, nurses, and beds were provided and updated within
the simulation. In contrast, nurses and robots on a real labor
floor must read handwritten information off of a white-
board (i.e. “dashboard”), as depicted in Figures 2 and 3.
Extracting and parsing this information autonomously with
high degrees of accuracy and reliability presents a sub-
stantial technical challenge. We made two assumptions to
address this: (1) that the set of physician and nurse names
is closed and known in advance, and (2) that patient names
are transcribed for the robot upon patient arrival.

In our demonstration, we leveraged the structured nature
of the dashboard to introduce priors that ensured patient
information was interpretable. Rows on the dashboard indi-
cate room assignments, while columns indicate patient
parameters (e.g. attending physician, gestational age, etc.).
Once our robot captured an image of the dashboard on the
labor and delivery floor, we applied a Canny edge detection
operator (Canny, 1986) and Hough transformation (Duda
and Hart, 1972) to isolate the handwriting in individual
grid cells (Figure 3). To improve segmentation accuracy,
images were preprocessed to remove colored writing, the
header row at the top of the whiteboard, and the room
name columns at the left and middle of the whiteboard. The
images were also postprocessed using heuristics to improve
the location of the line estimates. Specifically, rows were

biased toward having uniform heights, whereas columns of
each field were biased to be the same width on the left
and right side of the central column that contained room
numbers.

The contents of each grid cell were processed using a
classification technique appropriate to the data type therein.
Numeric fields were parsed using a convolutional neural
network (CNN)2 trained on MNIST data, whereas alphabet-
ical fields with known sets of possible values (e.g. attending
physician, nurse names) were parsed using a multi-class
CNN trained on handwriting (Figure 5).

Handwriting samples consisting of 28 uniquely written
alphabets served as a basis for generating classifier train-
ing data. Fonts were created from the provided samples and
used (along with system fonts) to create a large set of binary
images containing samples of nurse names. These synthetic
writing samples were constructed with a range of applied
translations, scalings, and kerning values within a 75 × 30
pixel area.

The vision system was used to determine the current sta-
tus of patient–nurse allocations, nurse role information, and
room usage. Prior to deployment, we performed a valida-
tion of the vision system and found our recognition sys-
tem to correctly classify handwritten samples across 15
classes (names) with ∼83.7% overall accuracy and 97.8%
average accuracy. These results were obtained without per-
forming any environmental manipulations, such as adjust-
ing lighting or employing high-resolution cameras. In the
pilot deployment, our vision system assisted humans with
transcription of patient data by presenting suggested input
to the user for confirmation.

7.1.2. Communication. The system separated auditory
processing (i.e. speech recognition) into two components
before determining an appropriate query and issuing it to
the decision support system: the first component transcribed
a user’s spoken commands to text; the second converted
the text into an appropriate, object-based JAVA query to be
issued to the apprenticeship scheduler to generate a decision
support recommendation.

To transcribe a user’s spoken commands to text, we
employed CMUSphinx,3 an open-source speech-to-text
recognition software developed by Carnegie Mellon Uni-
versity. To achieve high-level performance in a live setting,
we defined a list of template-based phrases a user might
utter, such as “Where should I move the patient in room
[#]?” or “Who should nurse [Name] take care of?” To
understand the person’s query, the system merely needed
to determine (1) which type of query the person had made
and (2) which keywords define the parameters of that query
(i.e. the room number in the query, “Where should I move
the patient in room [#]?”).

Based on information available a priori (e.g. the list of
nurse names), the system enumerated all possible instantia-
tions of these template-based queries and added them to the
CMUSphinx’s language database. We modified this to more
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Fig. 4. The architecture of the robotic decision support system.

Fig. 5. The convolutional neural network architecture we utilized for our vision system. This network comprised a single input layer

for an individual grid cell from the white board, two alternating sets of convolutional (C1 and C2) and maxpool layers (P1 and P2),

followed by a single fully connected layer (F1), with 15 output classes: one for each of the nurses’ names.

Fig. 6. The robot system in action on the labor floor.

heavily weight the likelihood of words that were part of
the aforementioned key phrases to increase the probability
of proper transcription. We also required a supplementary
pronunciation file to compile the database for runtime.

When a user needed to query the robotic decision support
system, they would press a button on a laptop to initiate
the auditory processing subroutine. The laptop transmitted
the audio from the microphone to the processing subroutine
until that subroutine determined that the user had finished
their query. The CMUSphinx module would listen to the
audio in real time and constantly update its prediction as the
user spoke: upon completion, the system produced a text-
based transcription of the query.

To determine which query type was spoken by the user,
the system removed all keywords defining the parameters
of the query from the transcript (e.g. the room number from
the example above), then computed the Levenshtein dis-
tance (Levenshtein, 1966) between the pruned transcript
and each of the query templates. The system then rank-
ordered the query templates based on their Levenshtein
distance from the pruned transcript, and selected the one
with the highest rank as the inferred query, with one caveat:
if the highest ranking query template’s keyword options
(e.g. a room number) did not match the transcribed key-
word (e.g. the name of a nurse), the system eliminated
the highest-ranking query, then considered the next-highest
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query. This process would repeat until the first satisfiable
query template was identified.

Finally, based on this inference, the auditory processing
subroutine would call the apprenticeship scheduler, provid-
ing as input the type of query and an ordered list of the
keywords that parameterize the query.

7.1.3. Decision support. The live pilot demonstration of
the robot incorporated the same mechanism for generat-
ing decision support as that used during our experiments.
However, unlike the experiments, the decision support sys-
tem’s input was taken from the vision subsystem, and the
user query from the communication subsystem. The set of
possible actions to be recommended was filtered according
to the query as recognized by the communication subsys-
tem. For example, if the user asked “Where should I move
the patient in room 1A?,” actions that would change nurse
assignments were not considered. The recommended action
was communicated to the user via text-to-speech software.

7.2. Feedback from nurses and physicians

We conducted a test demonstration on the labor floor
(Figure 6). Three users interacted with the robot over the
course of 3 hours. Ten queries were posed to the robot;
seven resulted in successful exchanges and three failed
due to background noise. A live recording of the demo is
available at http://tiny.cc/RobotDemo.

After interacting with the robotic support, User 1, a
physician, said, “I think the [robot] would allow for a more
even dispersion of the workload amongst the nurses. In
some hospitals …more junior nurses were given the next
patient…more senior nurses were allowed to only have one
patient as opposed to two.” User 2, a resource nurse, said,
“New nurses may not understand the constraints and com-
plexities of the role, and I think the robot could help give her
an algorithm …that she can practice, repeat, and become
familiar with so that it becomes second nature to her.” User
3, a labor nurse, offered, “I think you could use this robot as
an educational tool.”

8. Future work

The experiment results and successful system demonstra-
tion raise several promising areas of future work. First, fur-
ther study is needed to understand how embodiment affects
trust, reliance, and compliance for a spectrum of decision
support form factors. In this experiment, two form factors
were investigated: a computer-based decision support sys-
tem and a relatively anthropomorphic robotic system (i.e.
an Aldebaran NAO). Based upon our initial findings, one
may hypothesize that a more humanoid robot (e.g. a Honda
ASIMO) might further improve the ability of participants
to detect changes in advice quality.

Second, future work will investigate how the relationship
between the nursing staff and the decision support system

evolves over days and weeks as a part of a longitudinal
study. The cross-sectional study we report in this paper pro-
vides initial insight into the effects of embodiment on trust,
reliance, and compliance. However, it is important to eval-
uate how these phenomena might evolve with time. Such a
longitudinal study also presents technical challenges. As the
robot’s experience grows, so too should the robustness of
its machine learning representation of the ideal patient flow
through the hospital. Future research will improve upon
our machine learning formulation to continuously incor-
porate new experiences in a semi-supervised fashion so as
to minimize the need for tedious human labeling while not
sacrificing the quality of the policy.

Finally, future research is necessary to design the robotic
decision support system to function as a training tool. Per-
haps by learning from experts, the robot could serve as an
infinitely patient tutor for novice nurses or other support
staff. We found initial evidence in prior work regarding the
efficacy of our apprenticeship scheduling algorithm serving
as a tutor in a military defense training simulation (Gom-
bolay et al., 2017). In future work, we aim to investigate
the efficacy of such a tutor for managing patient flow in
hospitals.

9. Conclusion

This paper addresses two barriers to fielding intelligent
hospital service robots that take initiative to participate
with nurses in decision making. We observed experimen-
tal evidence that experts performing decision-making tasks
may be less susceptible to the negative effects of support
embodiment. Further, our decision support was able to pro-
duce context-specific decision strategies and apply them to
make reasonable suggestions for which tasks to perform
and when. Finally, based on the previous two findings, we
conducted a first successful test demonstration in which a
robot assisted resource nurses on a labor and delivery floor
in a tertiary care center.
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Notes
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database of employment statistics at: http://kff.org/other/state-
indicator/total-number-of-professionally-active-nurses-by-
gender/?currentTimeframe=0.
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2. Thanks go to Mikhail Sirontenko for developing this
package, which is available at https://sites.google.com/site/
mihailsirotenko/projects/cuda-cnn.

3. CMU Sphinx Open Source Speech Recognition Toolkit; avail-
able at http://cmusphinx.sourceforge.net/.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension Media type Description

1 Video Nao offering advice to a partic-
ipant with speech and co-speech
gestures.

2 Video Tutorial describing the labor and
delivery floor simulation.


