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Storage systems’ job is getting more challenging

§ El Capitan reflects general changes in HPC

§ Compute rates growing faster than I/O rates and storage capacity
— Sierra 125 petaFLOPs
— El Capitan 2 exaFLOPs (projected)
— Not so easy to make the file system 16x as fast and 16x as large

§ Need to support traditional HPC I/O workloads
— Defensive I/O / checkpoints / reading input files / writing output
— Existing codes need be able to run with minimal to no modifications

§ Also need to support new computing
paradigms on our systems
— Machine learning, AI
— Complex simulation workflows
— In situ analysis and data reduction
— I/O libraries and tools

§ What can we do?
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Traditional HPC workloads – the usual suspects

§ Lustre works great, it’s what it was built for!
— But there are some things to be aware of

§ Within one simulation, processes perform file 
operations simultaneously, increasing load and 
contention on the global parallel file system

§ Multiple simulations running at the same time 
compete in ways mysterious to users

§ Past burst buffer implementations not widely 
adopted

§ What can be done:
— Good: do less I/O
— Better: faster filesystem built with SSDs
— Better still: usable burst buffer

(AKA file system per running application)

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{

/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}
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Machine learning training workloads are stressing the I/O 
system in new ways for HPC systems

§ Machine learning training performs a large 
number of small, random reads

§ Parallel file systems are not designed for 
this workload - local low-latency storage is 
a better fit

§ Example: LBANN crashed Sierra with a 
large-scale training run with 1000 trainers

§ What can be done:
— Good: optimize for parallel file systems
— Better: direct PCIe attached block storage
— Best: low-latency shared storage on multiple 

nodesLBANN: Livermore Big Artificial Neural Network Toolkit: 
https://github.com/LLNL/lbann
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Rabbit module: in-chassis local storage++

§ Architecture which can support both 
usage models with shared storage 
hardware

§ One Rabbit module per compute chassis
— 18 SSDs in the Rabbit-S storage enclosure
— Rabbit-P AMD Epyc based storage node

§ SSDs directly PCIe attached to the 
Rabbit-P node and compute blades 

§ Rabbit-P node connected to the high-
speed interconnect
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Rabbit module: in-chassis local storage++

OK, we have the hardware, but ...

How is access controlled?

How is it prepared for use and torn down?

How does the user request it?
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Operating system stack

§ Nodes run Tri-Lab Operating System Stack (TOSS) *
— Linux distribution focused on HPC clusters
— All the good bits from RHEL plus more, including …
• ZFS and Lustre
• Kernel with addition drivers necessary (minimal changes)
• Flux, Kubernetes, and Rabbit (NNF) software

* https://dl.acm.org/doi/10.5555/3433701.3433754
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Rabbit storage
orchestration stack

§ Managed by HPE provided containers
— Reconfigures PCIe fabric
— Creates / destroys NVMe namespaces
— Creates / destroys filesystems
— Performs asynchronous data staging
— Rabbit storage state maintained in etcd
— Interprets job provided storage requests

§ Developed for a Kubernetes cluster
— K8s deployed on TOSS (stateless)
— Integrated with Ansible
— K8s on rabbit and worker nodes
— Redundant K8s master nodes

§ Services running on compute nodes
— Filesystem mount daemon
— Data movement daemon
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Flux resource manager allocates compute and storage

§ Flux uses NNF interfaces to allocate 
and control resources

§ Rabbit Kubernetes's interfaces were 
co-designed with HPE to support 
Flux
— Exposed resource granularity
— Resource discovery interface
— Resource request translation interface
— Resource allocation interface
— Performance degradation notification

§ Requires unique scheduling 
capabilities not provided by 
traditional HPC schedulers
— Locality aware scheduling for compute 

and storage resources
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Dynamic reconfiguration between node-local and
job-local storage

§ DataWarp directives (#DW)
— jobdw – ephemeral filesystem 
— stage_in – copy data in before job
— stage_out – copy data out after job
— create_persistent – persistent filesystem
— destroy_persistent
— persistentdw
— container – request user container

§ Directives provided to Flux as part 
of the user’s job script

§ Multiple directives can be specified A Model of Interaction Between DataWarp and Flux
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Ephemeral Lustre and data staging
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§ A temporary Lustre filesystem instance 
backed by Rabbit storage

§ Exists for the lifetime of a single job

§ Can span multiple Rabbit modules

§ Data stage-in/out from the Rabbit-P#DW jobdw type=lustre capacity=100TB name=lustre-job1 profile=metadata
#DW stage_out source=$DW_JOB_lustre-job1 dest=/p/lustre1/<username>/data/
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Ephemeral direct attached local filesystem and data staging
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§ Per-compute node XFS filesystem instance 
backed by Rabbit storage

§ Mounted on Rabbit-P before/after job 
execution for data staging

§ Remounted on compute during job execution
#DW jobdw type=xfs capacity=500GB name=xfs-job1
#DW stage_in source=/p/lustre1/<username>/data dest=$DW_JOB_xfs-job1
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More complex workflows can take advantage of containers 
and local shared storage

§ Some complex workflow I/O patterns 
can be problematic for parallel file 
systems
— Random small read/writes I/O
— Smaller, temporary files passed between 

stages are non-optimal and can create 
bottlenecks

— Problematic when the data needs to be 
shared between nodes in a workflow

§ Portions of a workflow can be 
containerized to run on a rabbit node
— Access to shared node-local storage on 

compute and rabbit node via GFS2
MuMMI: Machine-Learned Modeling Infrastructure: 
https://github.com/mummi-framework, Di Natale, SC’19

Macroscale 
Simulation

AI 
Inference

Microscale 
SimulationWorkload 

Manager

https://github.com/mummi-framework
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Complex storage workflows using a user container
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§ Shared direct PCIe attached 
storage
— Avoids swamping the HSN 

with data movement

§ Containers on the Rabbit
can be used for:
— SCR for data movement
— I/O libraries and tools
— Data management, 

reduction, migration
— In situ analysis
— Machine learning training

#DW jobdw type=gfs2 capacity=500GB name=gfs2-job1
#DW container name=job1 profile=foo JOB_DW_foo-local-storage=gfs2-job1
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Currently working to add Rabbit support to SCR

• Plan to support all three ephemeral file system types (Lustre, xfs, GFS2)
• When using Lustre and xfs, data movement to permanent file system will be via 

threads running on compute nodes
• When using GFS2, goal is to do data movement on rabbits in a container

• An “out-of-the-box” option to utilize the Rabbits for some applications

• An example implementation for reference purposes

https://github.com/LLNL/scr
https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi

Scalable Checkpoint / Restart (SCR) Library support

https://github.com/LLNL/scr
https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi
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1. Applications can still just write/read to the Lustre capacity tier (Will 
work but will not have scalable bandwidth compared to Rabbits.)

2. Applications allocate file systems on Rabbit using HPE-provided 
options for faster performance than global Lustre capacity tier

3. Applications utilize software libraries / tools integrated with Rabbit
to provide even better performance and portability

4. Workflow, analytics frameworks, I/O middleware can be ported to 
the Rabbits and provide better performance and new capabilities to 
codes

Applications can gradually adopt new strategies to 
support their I/O needs
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Progress So Far

§ Early Access System with Rabbit prototype 
hardware installed at Livermore

§ Containerized HPE Rabbit software deployed 
to TOSS-based Kubernetes environment
— Starting to test out delivered functionality

§ Hardware / software shakeout, evaluation, 
and testing underway
— Uncovered several hardware / firmware issues
— Iterated with HPE through software issues via 

github

§ Continued integration work (Flux, TOSS, 
Kubernetes, monitoring, etc) 

§ Additional prototype Rabbits being installed 
now
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Rabbit Resources

§ Rabbit software has been open sourced and is available at GitHub
— Using PRs, Issues, Actions, and container repositories

§ Documentation:
— https://nearnodeflash.github.io

§ Source code and container repositories:
— https://github.com/NearNodeFlash/nnf-dm
— https://github.com/NearNodeFlash/nnf-sos
— https://github.com/NearNodeFlash/nnf-deploy
— https://github.com/NearNodeFlash/lustre-fs-operator
— https://github.com/HewlettPackard/lustre-csi-driver

§ Entertainment:
— https://en.wikipedia.org/wiki/Rabbit_of_Caerbannog

https://nearnodeflash.github.io/
https://github.com/NearNodeFlash/nnf-dm
https://github.com/NearNodeFlash/nnf-sos
https://github.com/NearNodeFlash/nnf-deploy
https://github.com/NearNodeFlash/lustre-fs-operator
https://github.com/HewlettPackard/lustre-csi-driver
https://en.wikipedia.org/wiki/Rabbit_of_Caerbannog


19
LLNL-PRES-847975

Flux Framework Resources

§ Flux software has been open sourced and is available at GitHub
— Using PRs, Issues and Actions

§ Documentation:
— https://flux-framework.readthedocs.io/en/latest/

§ Source code repositories:
— https://github.com/flux-framework/flux-core
— https://github.com/flux-framework/flux-coral2
— https://github.com/flux-framework/flux-sched

https://flux-framework.readthedocs.io/en/latest/
https://github.com/flux-framework/flux-core
https://github.com/flux-framework/flux-coral2
https://github.com/flux-framework/flux-sched
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Thank you!

This work was performed under the auspices of the U.S. 
Department of Energy by Lawrence Livermore National 
Laboratory under Contract DE-AC52-07NA27344.


