
1
LLNL-PRES-847975

Rabbit Storage for
El Capitan
Fast I/O through Big, Pointy Teeth

Brian Behlendorf – behlendorf@llnl.gov
Olaf Faaland – faaland1@llnl.gov

LUG May 2023

mailto:faaland1@llnl.gov

2
LLNL-PRES-847975

Storage systems’ job is getting more challenging

§ El Capitan reflects general changes in HPC

§ Compute rates growing faster than I/O rates and storage capacity
— Sierra 125 petaFLOPs
— El Capitan 2 exaFLOPs (projected)
— Not so easy to make the file system 16x as fast and 16x as large

§ Need to support traditional HPC I/O workloads
— Defensive I/O / checkpoints / reading input files / writing output
— Existing codes need be able to run with minimal to no modifications

§ Also need to support new computing
paradigms on our systems
— Machine learning, AI
— Complex simulation workflows
— In situ analysis and data reduction
— I/O libraries and tools

§ What can we do?

3
LLNL-PRES-847975

Traditional HPC workloads – the usual suspects

§ Lustre works great, it’s what it was built for!
— But there are some things to be aware of

§ Within one simulation, processes perform file
operations simultaneously, increasing load and
contention on the global parallel file system

§ Multiple simulations running at the same time
compete in ways mysterious to users

§ Past burst buffer implementations not widely
adopted

§ What can be done:
— Good: do less I/O
— Better: faster filesystem built with SSDs
— Better still: usable burst buffer

(AKA file system per running application)

int main(int argc, char* argv[]) {
MPI_Init(argc, argv);

read_input();

for(int t = 0; t < TIMESTEPS; t++)
{

/* ... Do work ... */
/* ... Synchronization ... */

write_output();

}

MPI_Finalize();
return 0;

}

4
LLNL-PRES-847975

Machine learning training workloads are stressing the I/O
system in new ways for HPC systems

§ Machine learning training performs a large
number of small, random reads

§ Parallel file systems are not designed for
this workload - local low-latency storage is
a better fit

§ Example: LBANN crashed Sierra with a
large-scale training run with 1000 trainers

§ What can be done:
— Good: optimize for parallel file systems
— Better: direct PCIe attached block storage
— Best: low-latency shared storage on multiple

nodesLBANN: Livermore Big Artificial Neural Network Toolkit:
https://github.com/LLNL/lbann

5
LLNL-PRES-847975

Rabbit module: in-chassis local storage++

§ Architecture which can support both
usage models with shared storage
hardware

§ One Rabbit module per compute chassis
— 18 SSDs in the Rabbit-S storage enclosure
— Rabbit-P AMD Epyc based storage node

§ SSDs directly PCIe attached to the
Rabbit-P node and compute blades

§ Rabbit-P node connected to the high-
speed interconnect

6
LLNL-PRES-847975

Rabbit module: in-chassis local storage++

OK, we have the hardware, but ...

How is access controlled?

How is it prepared for use and torn down?

How does the user request it?

7
LLNL-PRES-847975

Operating system stack

§ Nodes run Tri-Lab Operating System Stack (TOSS) *
— Linux distribution focused on HPC clusters
— All the good bits from RHEL plus more, including …
• ZFS and Lustre
• Kernel with addition drivers necessary (minimal changes)
• Flux, Kubernetes, and Rabbit (NNF) software

* https://dl.acm.org/doi/10.5555/3433701.3433754

8
LLNL-PRES-847975

Rabbit storage
orchestration stack

§ Managed by HPE provided containers
— Reconfigures PCIe fabric
— Creates / destroys NVMe namespaces
— Creates / destroys filesystems
— Performs asynchronous data staging
— Rabbit storage state maintained in etcd
— Interprets job provided storage requests

§ Developed for a Kubernetes cluster
— K8s deployed on TOSS (stateless)
— Integrated with Ansible
— K8s on rabbit and worker nodes
— Redundant K8s master nodes

§ Services running on compute nodes
— Filesystem mount daemon
— Data movement daemon

9
LLNL-PRES-847975

Flux resource manager allocates compute and storage

§ Flux uses NNF interfaces to allocate
and control resources

§ Rabbit Kubernetes's interfaces were
co-designed with HPE to support
Flux
— Exposed resource granularity
— Resource discovery interface
— Resource request translation interface
— Resource allocation interface
— Performance degradation notification

§ Requires unique scheduling
capabilities not provided by
traditional HPC schedulers
— Locality aware scheduling for compute

and storage resources

10
LLNL-PRES-847975

Dynamic reconfiguration between node-local and
job-local storage

§ DataWarp directives (#DW)
— jobdw – ephemeral filesystem
— stage_in – copy data in before job
— stage_out – copy data out after job
— create_persistent – persistent filesystem
— destroy_persistent
— persistentdw
— container – request user container

§ Directives provided to Flux as part
of the user’s job script

§ Multiple directives can be specified A Model of Interaction Between DataWarp and Flux

11
LLNL-PRES-847975

Ephemeral Lustre and data staging

High Speed Network

Compute Node
Client Mount Services
Data Movement API

Compute Node
Client Mount Services
Data Movement API

Kubernetes Nodes

Rabbit Controllers

Rabbit API

Rabbit Inventory

Rabbit Configuration

Rabbit-P Node

Lustre Server

Rabbit Data Movement

Rabbit Storage Controller

Rabbit PCIe Controller

NVMe
Disks

Management Node
Workload Manager

Flux

Ephemeral Lustre
Filesystem

Global Lustre
Filesystem

PCIe Fabric

§ A temporary Lustre filesystem instance
backed by Rabbit storage

§ Exists for the lifetime of a single job

§ Can span multiple Rabbit modules

§ Data stage-in/out from the Rabbit-P#DW jobdw type=lustre capacity=100TB name=lustre-job1 profile=metadata
#DW stage_out source=$DW_JOB_lustre-job1 dest=/p/lustre1/<username>/data/

12
LLNL-PRES-847975

Ephemeral direct attached local filesystem and data staging

High Speed Network

Compute Node
Client Mount Services
Data Movement API

Compute Node
Client Mount Services
Data Movement API

Kubernetes Nodes

Rabbit Controllers

Rabbit API

Rabbit Inventory

Rabbit Configuration

Rabbit-P Node

Lustre Server

Rabbit Data Movement

Rabbit Storage Controller

Rabbit PCIe Controller

NVMe
Disks

Management Node
Workload Manager

Flux

XFS Filesystem

Global Lustre
Filesystem

XFS Filesystem

PCIe Fabric

§ Per-compute node XFS filesystem instance
backed by Rabbit storage

§ Mounted on Rabbit-P before/after job
execution for data staging

§ Remounted on compute during job execution
#DW jobdw type=xfs capacity=500GB name=xfs-job1
#DW stage_in source=/p/lustre1/<username>/data dest=$DW_JOB_xfs-job1

13
LLNL-PRES-847975

More complex workflows can take advantage of containers
and local shared storage

§ Some complex workflow I/O patterns
can be problematic for parallel file
systems
— Random small read/writes I/O
— Smaller, temporary files passed between

stages are non-optimal and can create
bottlenecks

— Problematic when the data needs to be
shared between nodes in a workflow

§ Portions of a workflow can be
containerized to run on a rabbit node
— Access to shared node-local storage on

compute and rabbit node via GFS2
MuMMI: Machine-Learned Modeling Infrastructure:
https://github.com/mummi-framework, Di Natale, SC’19

Macroscale
Simulation

AI
Inference

Microscale
SimulationWorkload

Manager

https://github.com/mummi-framework

14
LLNL-PRES-847975

Complex storage workflows using a user container

High Speed Network

Compute Node
Client Mount Services
Data Movement API

Compute Node
Client Mount Services
Data Movement API

Kubernetes Nodes

Rabbit Controllers

Rabbit API

Rabbit Inventory

Rabbit Configuration

Rabbit Node

Lustre Server

Rabbit Data Movement

User App Containers

Rabbit Storage Controller

Rabbit PCIe Controller

NVMe
Disks

Management Node
Workload Manager

Flux
Global Lustre

Filesystem

GFS2 FilesystemPCIe Fabric

§ Shared direct PCIe attached
storage
— Avoids swamping the HSN

with data movement

§ Containers on the Rabbit
can be used for:
— SCR for data movement
— I/O libraries and tools
— Data management,

reduction, migration
— In situ analysis
— Machine learning training

#DW jobdw type=gfs2 capacity=500GB name=gfs2-job1
#DW container name=job1 profile=foo JOB_DW_foo-local-storage=gfs2-job1

15
LLNL-PRES-847975

Currently working to add Rabbit support to SCR

• Plan to support all three ephemeral file system types (Lustre, xfs, GFS2)
• When using Lustre and xfs, data movement to permanent file system will be via

threads running on compute nodes
• When using GFS2, goal is to do data movement on rabbits in a container

• An “out-of-the-box” option to utilize the Rabbits for some applications

• An example implementation for reference purposes

https://github.com/LLNL/scr
https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi

Scalable Checkpoint / Restart (SCR) Library support

https://github.com/LLNL/scr
https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi

16
LLNL-PRES-847975

1. Applications can still just write/read to the Lustre capacity tier (Will
work but will not have scalable bandwidth compared to Rabbits.)

2. Applications allocate file systems on Rabbit using HPE-provided
options for faster performance than global Lustre capacity tier

3. Applications utilize software libraries / tools integrated with Rabbit
to provide even better performance and portability

4. Workflow, analytics frameworks, I/O middleware can be ported to
the Rabbits and provide better performance and new capabilities to
codes

Applications can gradually adopt new strategies to
support their I/O needs

17
LLNL-PRES-847975

Progress So Far

§ Early Access System with Rabbit prototype
hardware installed at Livermore

§ Containerized HPE Rabbit software deployed
to TOSS-based Kubernetes environment
— Starting to test out delivered functionality

§ Hardware / software shakeout, evaluation,
and testing underway
— Uncovered several hardware / firmware issues
— Iterated with HPE through software issues via

github

§ Continued integration work (Flux, TOSS,
Kubernetes, monitoring, etc)

§ Additional prototype Rabbits being installed
now

18
LLNL-PRES-847975

Rabbit Resources

§ Rabbit software has been open sourced and is available at GitHub
— Using PRs, Issues, Actions, and container repositories

§ Documentation:
— https://nearnodeflash.github.io

§ Source code and container repositories:
— https://github.com/NearNodeFlash/nnf-dm
— https://github.com/NearNodeFlash/nnf-sos
— https://github.com/NearNodeFlash/nnf-deploy
— https://github.com/NearNodeFlash/lustre-fs-operator
— https://github.com/HewlettPackard/lustre-csi-driver

§ Entertainment:
— https://en.wikipedia.org/wiki/Rabbit_of_Caerbannog

https://nearnodeflash.github.io/
https://github.com/NearNodeFlash/nnf-dm
https://github.com/NearNodeFlash/nnf-sos
https://github.com/NearNodeFlash/nnf-deploy
https://github.com/NearNodeFlash/lustre-fs-operator
https://github.com/HewlettPackard/lustre-csi-driver
https://en.wikipedia.org/wiki/Rabbit_of_Caerbannog

19
LLNL-PRES-847975

Flux Framework Resources

§ Flux software has been open sourced and is available at GitHub
— Using PRs, Issues and Actions

§ Documentation:
— https://flux-framework.readthedocs.io/en/latest/

§ Source code repositories:
— https://github.com/flux-framework/flux-core
— https://github.com/flux-framework/flux-coral2
— https://github.com/flux-framework/flux-sched

https://flux-framework.readthedocs.io/en/latest/
https://github.com/flux-framework/flux-core
https://github.com/flux-framework/flux-coral2
https://github.com/flux-framework/flux-sched

20
LLNL-PRES-847975

Thank you!

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

