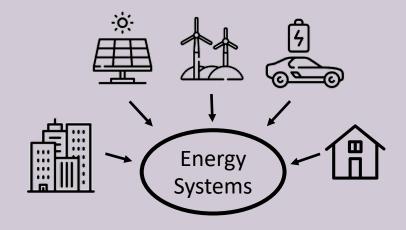


Carbon-Aware EV Charging

Yuanyuan Shi

Assistant Professor

University of California, San Diego

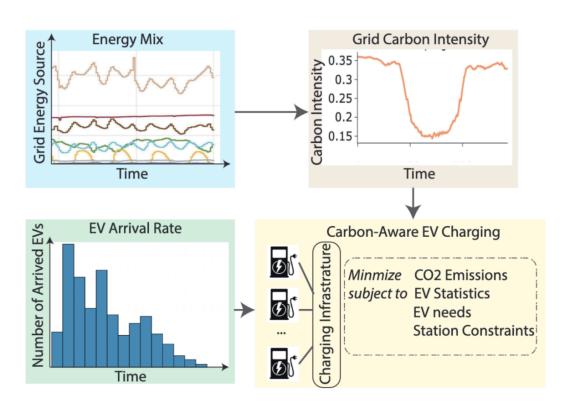

My Research: Learning and Control for Power Systems

UC San Diego

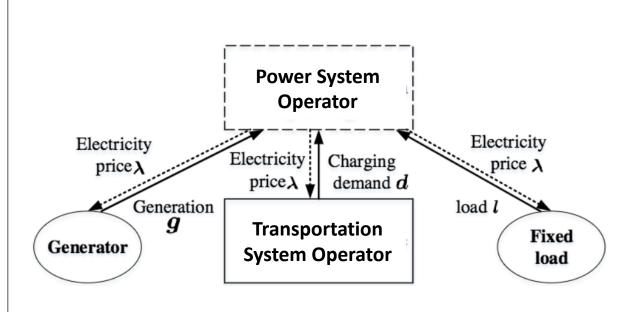
Applications

- Voltage/frequency control
- Smart buildings
- Electric Vehicles
- Energy market

- Carbon-aware EV charging
- Stability-constrained Reinforcement Learning for inverter-based voltage and frequency control
- Operator learning for PDE and building control
- ❖ Learning strategic DER behaviors and interactions



Methods


- Machine learning
- Nonlinear control
- PDE control
- Optimization

Carbon-Aware EV Charging

UC San Diego

- EV can only be "carbon-zero" if it's charged by clean energy
- But carbon intensity (renewable ratio) and EV charging demand do not always align!
- From time-of-use charging price optimization → carbonaware EV charging, can reduce > 20% carbon emission

- Multi-station EV charging couples the operation of power and traffic networks
- We propose a Charging Demand Function approach that can solve the bilevel program with optimality guarantee

Thank you!

yyshi@eng.ucsd.edu

References:

[1] Kai-wen Cheng, Yuxin Bian, Yuanyuan Shi, and Yize Chen, "Carbon-Aware EV Charging," *IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)*, 2022.

[2] Yufan Zhang, Sujit Dey, and Yuanyuan Shi, "Optimal Vehicle Charging in Bilevel Power-Traffic Networks via Charging Demand Function," Arxiv preprint.