Regional & Future Climate Considerations for Pistachio Production

Kat Jarvis-Shean

UCCE Sacramento, Solano & Yolo Counties

UC Pistachio Day, 2024

- Current
 Production
 Areas
- Annual Climatic Considerations
- Orchard Lifetime Consideration
- Future Climate Considerations

Current Pistachio Geography

University of **California** Agriculture and Natural Resources

Data & Image: Admin Committee For Pistachios

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Photos: Jarvis-Shean, Ferguson, UC IPM

Current Pistachio Geography

University of **California** Agriculture and Natural Resources

Data & Image: Admin Committee For Pistachios

Climate: In-Season Rains

	April	May	June	July	Aug	Sept
Durham	1.5	1.1	0.3	0.0	0.0	0.1
Davis	1.2	0.5	0.1	0.0	0.1	0.1
Firebaugh	0.7	0.4	0.1	0.0	0.0	0.1
Belridge	0.6	0.3	0.0	0.1	0.0	0.0

CIMIS, 2000-2019

Climate: In-Season Heat

University of **California** Agriculture and Natural Resources

Figures: Louise Ferguson, UC Davis

Climate: Heat Units

•Nut Maturation

Delayed Development, Poor Split %
~2400 HU maximum kernel weight
Above 2000 HU, 100 HU=1% splits

University of **California** Agriculture and Natural Resources

*Heat Unit= Avg daily temp – 7°C

Climate: In-Season Heat

Closed Shell Weight : Total Production Weight

Climate: Navel Orangeworm & Heat

- Earlier Biofix, More Generations
- Ease of Sanitation

2015 NOW Degree Days2020 NOW Degree Days

Climate: Winter Chill

- Impacts of Chill
 - Delayed bloom
 - Poor male overlap, increased blanks
 - Multiple shakes

Scattered 'Kerman' bloom observed in 2014

Photo: D. Doll

Climate: Chill Accumulation

Chill Hours

■ Five Year Average ■ 2014-2015

- Cultivar important, esp. males
- Fog helps chill

UC Davis Fruit & Nut Center

Climate: Freeze

Winter Juvenile Tree Dieback

University of **California** Agriculture and Natural Resources

Photo: C. Kallsen

- Current
 Production
 Areas
- Annual Climatic Considerations
- Orchard Lifetime Consideration
- Future Climate Considerations

Water Quantity and Quality

- Varies across the state
 - 42" of water use for maximum production
 - Can get by on less, but affects yield
 - May need more if poor quality
- Source Issues
 - Groundwater
 - Surface Water

Water Quantity

University of **California** Agriculture and Natural Resources

Image: CA Dept Water Resources

Soil Quality

- Saturated or easily saturated soils
 - River bottoms
 - High water table (quality and quantity)
- Saline, Alkaline soils
 - Toxicity of sodium, chloride, and boron

University of **California** Agriculture and Natural Resources

CA Soils Resource Lab, UC Davis

- Current
 Production
 Areas
- Annual Climatic Considerations
- Orchard
 Lifetime
 Consideration
- Future Climate Considerations

Changing Conditions?

Photos: Jarvis-Shean, Ferguson, UC IPM

Changing Precipitation

Extreme Dry Years

OUCLAIOES

Low November–March precipitation totals for these years resemble 2013–14 or 1976–77, the driest year in modern California history.

Prepared for both feast & famine, water-wise. Drought resilient & resilient to saturated soils.

University of California

UCLA Center for

Climate Science

©2018 UCLA Center for Climate Science

Find more on this project: www.ioes.ucla.edu/project/future-extreme-precipitation-california

Increase Temps → Decrease Snowpack

Crop, soil management, irrigation & water infrastructure for water stress resilience.

DWR 2015

\uparrow Heat \rightarrow \uparrow NOW Generations

Percent of years in which 4th (B) or 5th (C) generation occurred. Dark = More frequent. Middle of the road warming scenario (RCP 4.5)

University of **California** Agriculture and Natural Resources

Pathak et al, 2020

Winters have been getting warmer

University of **California** Agriculture and Natural Resources

Wang et al. (2017)

...And less foggy

University of **California** Agriculture and Natural Resources

Baldocchi & Waller (2014)

Expect continued winter warming...

 $\Delta T DJF (C)$

From 1980s to 2060s

- Sac Valley: \uparrow 3.1° F
- San Joaquin Valley: 个 3.2° F

But continued variability

- Still some cold winters, and winters that we now consider average.
- But more "low chill" winters AND lower chill winters than before.

University of **California** Agriculture and Natural Resources

Pierce et al. (2013)

Chill Projections for 9/10 years

	Turn of the Century	Mid 21 st Century	End 21 st Century
Sac Valley	70	59 (↓ 16%)	49 (↓ 30%)
N. San Joaquin	71	61 (↓ 14%)	51 (↓ 28%)
S. San Joaquin	64	51 (↓ 20%)	42 (↓ 34%)

Luedeling et al. (2009)

If Kerman needs 55-60 chill portions...

	Turn of the Century	Mid 21 st Century	End 21 st Century
Sac Valley	70	59 (↓ 16%)	49 (↓ 30%)
N. San Joaquin	71	61 (↓ 14%)	51 (↓ 28%)
S. San Joaquin	64	51 (↓ 20%)	42 (↓ 34%)

Luedeling et al. (2009)

Dormancy breaking products *can potentially* compensate 10-20% chill

- Kaolin clay, calcium carbonate Decreases bud, shoot heat (Doll, Culumber)
- Dormant/Horticultural Oil Increased, earlier budbreak (Beede, Ferguson)
- Hydrogen Cyanamide Increased, earlier budbreak.
 Dormex is now labeled for pistachio use
- New research on the physiology of dormancy (Dr. Z)

Regional Conclusions for The Future

- No perfect site
- Management of many of these issues is possible
- For heat, chill, water & soil, early decisions are key
- Decisions must be made on current and future conditions

Plan for...

- Great water challenges
 - Too much
 - Too little
 - Poor quality
- More insect pressure
- Lower chill