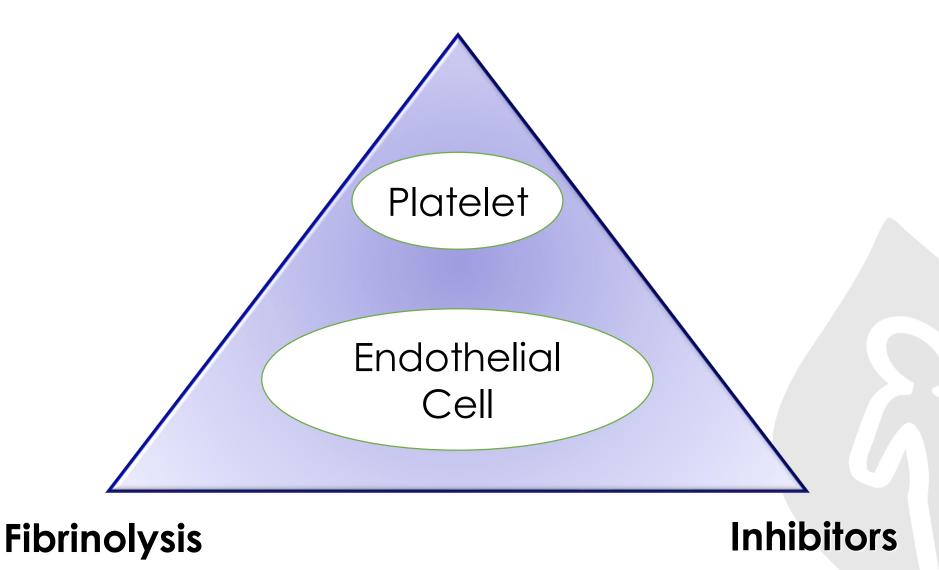
Platelet Defects: Glanzmann's Thrombasthenia & Bernard-Soulier Syndrome

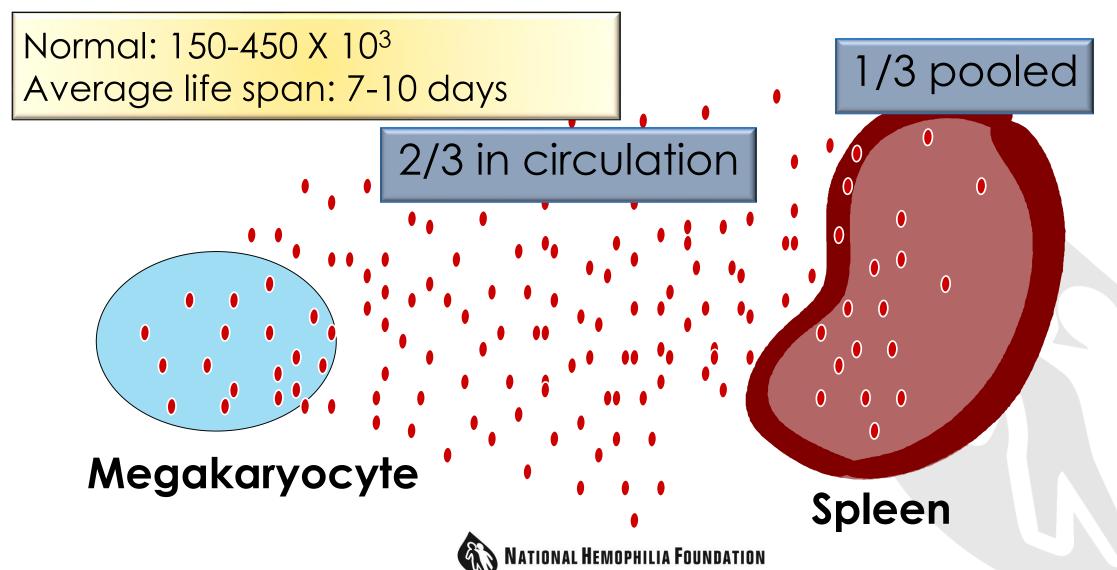
Jim Munn, MS, BSN, RN-BC -


Hello!

Jim Munn, MS, BSN, RN-BC -

Consulting Fees (e.g. advisory boards): Bayer; Bioverativ; CSL Behring; Genentech; Novo Nordisk; Octapharma; Takeda

Procoagulants



Role of platelets in hemostasis

- Primary hemostatic plug
- Secretion of substances to promote
 - Platelet recruitment
 - Vessel contraction
 - Coagulation
- Provides optimal surface for coagulation to proceed
 - Phospholipid membrane
 - Optimizes formation of complexes

Platelet distribution

Diagnosing platelet disorders

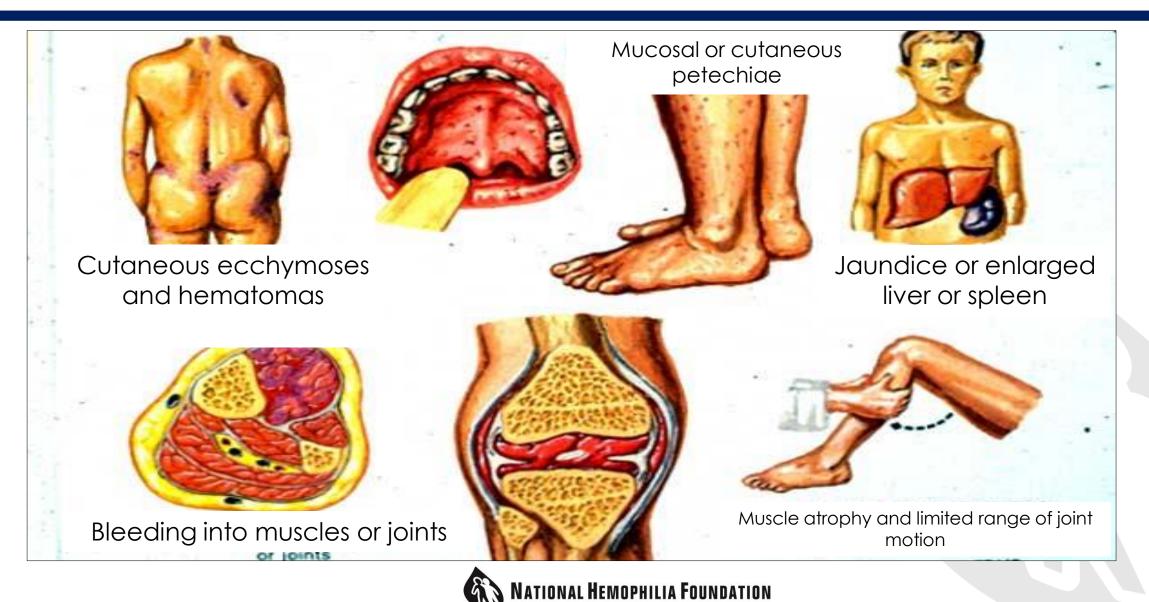
History

Physical Examination

Laboratory Evaluation

Historical assessment of platelet function

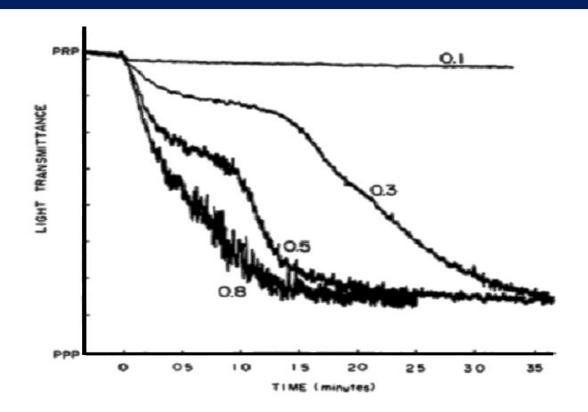
- Age of onset of symptoms
 - Young age inherited
 - Older age acquired
- Medications
 - Including prescribed, over the counter, and herbal remedies
 - Timing of medications in relation to development of symptoms
- Assess bleeding history of other family members
 - Parent with symptoms (dominant disorders)
 - Parent without symptoms (recessive, X-linked disorders)



Genetic risk

- Severe congenital platelet dysfunction is rare
 - More common
 - Consanguinity
 - Small geographically isolated communities
- Common secretory deficits
 - Heterozygous mutations are more frequent

Physical examination


Laboratory evaluation

- Initially bleeding time was used to assess platelet function
 - Challenges
 - Technically difficult
 - Problems with reproducibility
 - May not be good correlate of clinical bleeding
- Majority of platelet function defects have normal platelet count & morphology
- Platelet aggregation studies

Evaluation of Platelet Function, 1972;287:155-9.

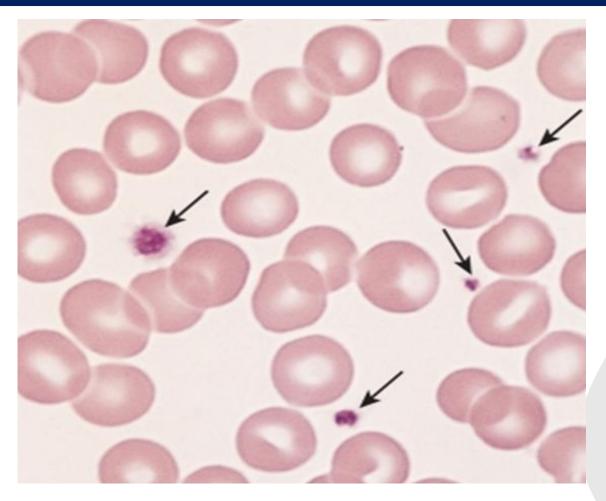
Common agonists used in platelet aggregation studies

Ristocetin-induced platelet agglutination. Ristocetin at final concentrations indicated (mg/ml) was added to platelet-rich plasma (PRP) in a Payton aggregometer. Normal PRP under similar conditions shows little or no agglutination until ristocetin concentrations exceed 0.5 mg/ml. PPP, platelet-poor plasma

- ADP
- Epinephrine
- Collagen
- Arachidonic acid
- Ristocetin
- Thrombin

Variables impacting platelet aggregation

- Sample collection
- PRP preparation
 - Platelet count in PRP
- Temperature
- Lipemia
- Interval from venipuncture
- Size of cuvette
- Rate of stirring
 - 100 to 1200 rpm
 - Size and shape of stir bar
- Drugs/smoking


Electron microscopy

 Helps classify some disorders

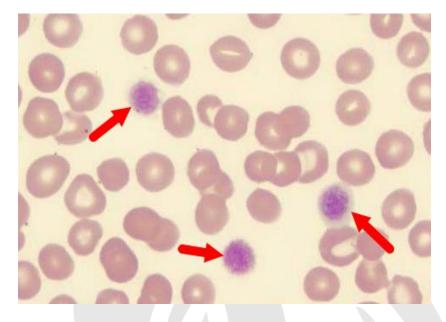
- Useful tool to differentiate defects of:
 - Cytoskeleton
 - Platelet organelles
 - Membrane defects

Platelet Function

Normal peripheral blood smear showing red blood cells, with arrows designating platelets

Platelet function

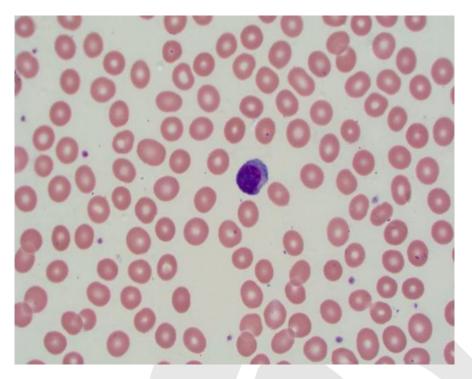
- Transformation of inactivated platelets into well formed plug
- Three steps
 - Initiation
 - Extension
 - Cohesion



Platelet initiation disorders

- Bernard-Soulier Syndrome¹
 - First described 1948
 - Autosomal recessive
 - Absence of GP-lb/IX/V receptor
 - Macrothrombocytopenia
 - Loss of function
- Platelet-type VWD (pseudo-VWD or PLT-VWD)^{2,3}
 - First described 1982
 - Autosomal dominant
 - Defect of GP-lba receptor→spontaneous binding of VWF
 - Normal size or macrothrombocytopenia
 - Gain of function

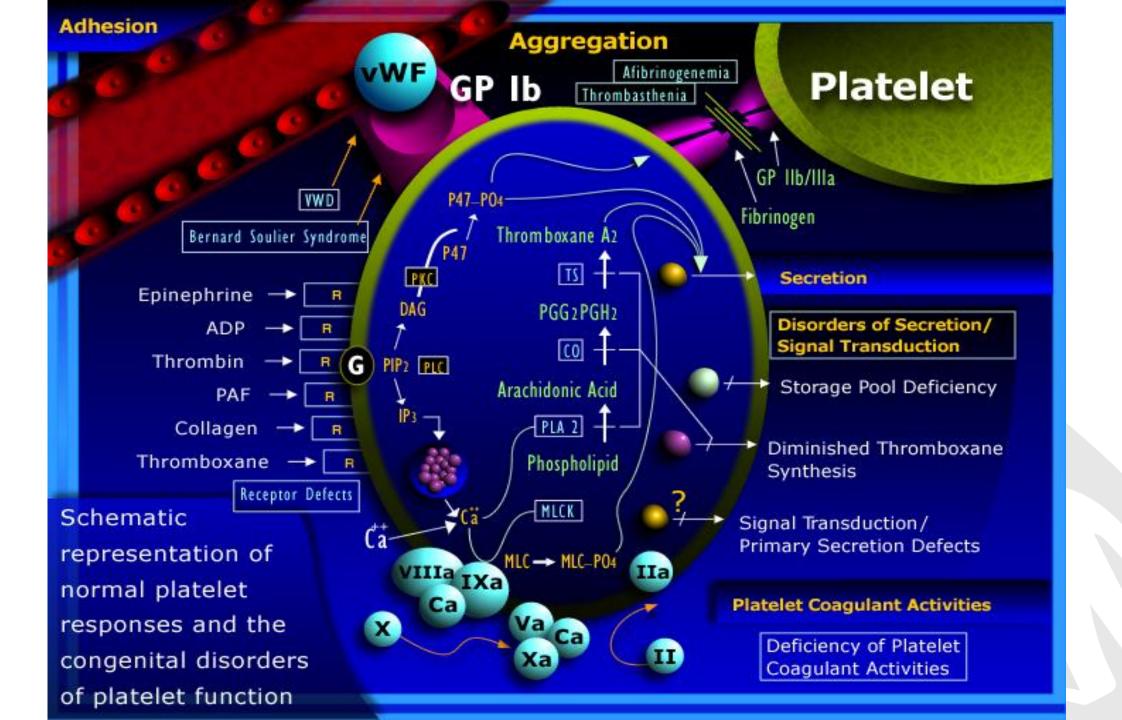
Bernard-Soulier Syndrome, with arrows designating enlarged platelets


¹Bernard-soulier syndrome. Genetics Home Reference, 2016. (Accessed August 10, 2020, at https://ghr.nlm.nih.gov/condition/bernard-soulier-syndrome#sourcesforpage.)

²Othman M. Platelet-type von Willebrand disease: a rare, often misdiagnosed and underdiagnosed bleeding disorder. Semin Thromb Hemost 2011;37:464-9.

³Franchini M, Montagnana M, Lippi G. Clinical, laboratory and therapeutic aspects of platelet-type von Willebrand disease. Int J Lab Hematol 2008;30:91-4.

Cohesion defect


- Glanzmann Thrombasthenia
 - First described 1918, Eduard Glanzmann, Swiss pediatrician
 - "Weak" platelets
 - Defect of integrin allbβ3, formerly GP llb/llla receptor
 - Type I (complete absence)
 - Type II (10-20% antigen expression)
 - Type III (normal antigen; abnormal function)
 - Autosomal recessive (chromosome 17)
 - Aggregations show no response to all agonists except ristocetin

Peripheral blood smear showing normal platelet count and morphology seen in Glanzmann thrombasthenia

dentistry/glanzmanns-thrombasthenia; accessed 8-10-20.

Treatment

- Patient and family education
 - Mucocutaneous bleeding is common
 - Severe hemorrhage
 - Trauma
 - Surgery
 - Gastrointestinal tract
 - Menses
 - Post partum period
 - Medications to avoid
 - Medic Alert
 - Hepatitis A & B immunizations
 - Contact of HTC

Treatment

- Antifibrinolytic agents
- Desmopressin acetate (DDAVP®, Stimate®)
 - Storage pool disorders usually (but not always) respond
 - Increase in the levels of circulating VWF
 - Effects on platelet function remain undefined
- RBC transfusion if patient anemic
- Iron replacement for iron deficiency
- Recombinant factor VIIa
- Platelet transfusion
- Gene therapy

Platelet transfusion

- Used for life threatening bleeding
 - Apheresis unit recommended (~5-6 pooled blood bank units)
 - Minimize multiple donor exposure
 - Can cause sensitization
 - Refractory state
 - Leuko-poor or leuko-depleted
 - Minimize long-term sensitization to HLA class 1 proteins expressed on platelets
- Avoid exposure in disorders with absence of membrane GP
 - GT and BSS
 - Isoantibody or alloantibody can develop
 - Refractory to future transfusions

Seligsohn U. Treatment of inherited platelet disorders. Haemophilia 2012;18 Suppl 4:161-5.

Neunert C. Acquired platelet disorders: diagnosis and management. In: Abutalib SA, Connors JM, Ragni MV, eds. Nonmalignant Hematology. Cham, Switzerland: Springer International Publishing; 2016:199-207.

Treatment by disease type

- GT, BSS
 - Major surgery
 - rVIIa
 - HLA platelets (if risk of bleeding with rVIIa)
 - Antifibrinolytic therapy
 - Minor surgery
 - rVIIa-90 mcg/kg immediately prior, every 2 for 12 hours, increasing intervals
 - Higher initial dose for children
 - HLA platelets, antifibrinolytics
 - Dental-rVIIa, antifibrinolytics 5-7 days, topical hemostatic agents

Poon MC, Di Minno G, d'Oiron R, Zotz R. New Insights Into the Treatment of Glanzmann Thrombasthenia. Transfus Med Rev 2016;30:92-9. Solh T et al. J BLOOD MED 2015; 6: 219-227. Solh T, Botsford A, Solh M. Glanzmann's thrombasthenia: pathogenesis, diagnosis, and current and emerging treatment options. J Blood Med 2015;6:219-27. Diz-Kucukkaya R. Inherited platelet disorders including Glanzmann thrombasthenia and Bernard-Soulier syndrome. Hematology Am Soc Hematol Educ Program 2013;2013:268-75.

Session Evaluation

Take a few minutes now to fill out the session evaluation:

Rate this session

- Meaningful?
- Learned new ideas/skills?
- Will implement new ideas/skills?

How could this session be improved?

Comments?

