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New England Energy System

Requires coordinated investment planning

Resource Mix

Maine (Goal)
80% below 1990 level by
2050

Vermont (Goal)

RESOURCES RENEWABLES 80-95% below 1990 level
by 2050
New Hampshire
(Recommended Goal)
80% below 1990 level
Massachusetts (Limit) _by 2050
44% @ NATURAL GAS . 65% © winD 80% below 1990 level
25% @ NUCLEAR . 23% | REFUSE by 2050

12% @ NETIMPORTS 9% WOOoD
10% @ RENEWABLES =) 2% @ LANDFILLGAS
9% HYDRO . <1% @ soLAR 80% below 2001 level s sl e

Connecticut (Limit) Rhode Island (Goal)
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» Significant reliance on NG power plants » Ambitious economy-wide
» Variability of renewable energy generation decarbonization targets



Implications for Resilience

Poor coordination can lead to adverse impacts

WINTER STORM 2021

Texas largely relies on natural gas for power. It
wasn’t ready for the extreme cold.

Texas largely relies on natural gas — especially during times of high demand — to power the state.
Experts say natural gas infrastructure, from pumping it out of the ground to the plants in city
centers, was unprepared for the plunging temperatures brought by the winter storm.
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Coordinated Investment Planning

Regional-scale multi-vector energy system for the New England

* Power and natural gas (NG) system: different spatial and temporal
resolutions, investment and operational constraints

* Planning for various decarbonization targets & electrification scenarios
e Evaluating adoption impacts, e.g. space-heating electrification

* Role of low-carbon fuels, long-duration storage, and carbon capture

* Resource allocation for network resilience under disruptions
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/ \ Large-scale Optimization
Coordinated To minimize CAPX+OPEX
Investment planning (MILPs, Stochastic, Multi-Stage)
for Electric Power- 1 + Machine Learning Models
Natural Gas Network (spatio-temporal aggregation,
U /| predictive analytics)




Investment Planning under Uncertainty

Climate change + Inter-annual weather variations = demand-supply impacts
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Planning outcomes (investment cost, generation mix, network capacity):

* must be robust to demand-supply fluctuations

e account for uncertain cost and adoption rates for emerging technologies
e Consider behavior shifts of consumers, esp. with mass adoption of EVs




Capacity Expansion Problem (CEP)

Challenges: Tractability and accounting for key uncertainties

[ minimize (CAPEX and OPEX for both power and NG systems) ]
\

subject to:
* investment and operational constraints for both systems

* renewable portfolio standard (RPS), resource availability, CCS
\° coupling constraints: Power-NG interdependency, Emissions )

/decisions: \

» Power system: Generation investment [|]/decommissioning [D],
transmission expansion, and operational decisions
(unit commitment, dispatch, storage)
\> NG system: Pipelines [I/D], supply sources, pipe flows, storage/
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ML-Assisted Aggregation for CEPs

Tailored graph convolutional autoencoder + graph pooling with

tailored “proxy” loss function = learn spatio-temporal aggregation

* automatically learn spatial and temporal aggregations of

problem parameters (using power/NG loads, capacity factors)

* multi-objective loss function tradeoffs desirable characteristics:
* relative influence of power vs. NG load in temporal aggregations,
e spatial regularity vs. demand behavior similarity for spatial

aggregations
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Spatiotemporal Aggregations for CEP

* Spatial aggregation e e .| T
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 Temporal aggregation [set of representative days] =2 7-10%
better solutions than standard methods (k-medoid and PCA)

High-Dimensional Load Time Series Temporally Aggregated Load Parameters
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Change in Power Generation

Modeling Emissions Constraint

Joint emissions versus power system only
Twh Imposing joint emissions constraint

60- - » I solar and off-shore wind

»  nuclear and NG-fired plants

. » CC, CCS relatively less attractive as
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Impact of Electrification
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High electrification bumps up NG-based Typical winter week: higher dispatch from
power production

Khorramfar, Rahman, Dharik Mallapragada, and Saurabh Amin. "Electric-Gas Infrastructure Planning for Deep Decarbonization of
Energy Systems." arXiv preprint arXiv:2212.13655 (2022).

gas-fired plants under electrification



Spatial Distribution of Investments

Off-shore wind and solar are
dominating in coastal regions

No new capacity in west MA
even with increased demand
due to cheap power via new
transmission lines

Higher decarbonization target
- more capacity (offshore
wind, more CCGT-CCS, less
CCGT) and transmission lines

New Tranas. Lines: 15

New Capacity: 62 GW

B OCGT 0GW
N CCGT oGWwW
[ CCGT-CCS 12 GW
solar-UPV 21 GW
B wind-new 9 GW
Il wind-offshore 20 GW
I nuclear-new 0GW
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Take-aways and Future Directions

* Joint planning of interdependent energy vectors
* high-fidelity models of interdependent networks,
e proper accounting for emissions and evaluation of outcomes

* To meet decarbonization goals, we need:
 Robust when and where decisions for renewables: offshore wind, solar

* Evaluation of gas-fueled power generation (esp. newer technologies)
considering cost, reliability, and resource availability

* Assess role of Renewable Natural Gas (RNG) and zero-emission biofuels

 ML+OPT for modeling climate change uncertainties

* including inter-annual weather fluctuations = impact on
supply/demand variations = energy planning outcomes

» identify scenarios of interest to obtain robust planning decisions

* tractable algorithms for regional-scale multi-vector energy models
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