

# Basics of Factor V, Combined FV, & FVIII- FV-Short Deficiency

Sweta Gupta, MD, MS Indiana Hemophilia & Thrombosis Center



# No financial disclosures



### **Care of Patients With Bleeding Disorders**







- First reported in 1947 by Owren
- Primarily made in the liver
- 20% of FV in platelets
- Half life 12-36 hrs





Image: Alan E. Mast, Arterioscler Thromb Vasc Biol. 2016 January; 36(1): 9-14.

# FV deficiency--Diagnosis

## Inheritance

- Rare bleeding disorder: 1 in 1,000,000
- 56 mutations published to date
  - Majority are null mutations for severe FV deficiency
- Autosomal Recessive
  - Males = females
  - More common in Iran & southern India where it is ten times more frequent than in western countries
- Genetic counselling important

### NATIONAL HEMOPHILIA FOUNDATION

#### **Autosomal Recessive Inheritance Pattern**



Image in the public domain\*

Thalji N et al, Semin Thromb Hemost. 2013;39(6):607

### **Clinical Features**

#### Deficiency--Severe <20%, Mild ≥20% Bleeding might not correlate with levels



Adapted from: Thalji N, Camire RM. Semin Thromb Hemost 2013;39:p.610.

- In the Iranian cohort, 50% women had menorrhagia, 43% postpartum bleeding
- Some cases of recurrent miscarriages, premature births and/or fetal losses (level 1-10%)

#### NATIONAL HEMOPHILIA FOUNDATION

Thalji N et al, Semin Thromb Hemost. 2013;39(6):607-612.; Lak M et al, Br J Haemaior 1998;103:1067-9; Bolton-Maggs et al, Haemophilia 2004; 10: 593-628; Younesi et al, Haemophilia (2013), 19, e296--e323

## Laboratory Diagnosis

- Abnormal blood clotting tests: PT & aPTT
- Check FV and FVIII level
  - Combined F5F8 deficiency may exist
- Acquired factor V deficiency
  - Development of anti-factor V antibodies
    - Use of bovine thrombin during surgery
    - Underlying rheumatologic conditions or malignancies
    - Use of some antibiotics





Asselta et al, Semin Thromb Hemost 2009; 35: 382-389; Girolami et al, heemophilia 2005; 11: 26-30; Bolton-Maggs et al, Haemophilia 2004; 10: 593-628; Younesi et al, Haemophilia (2013), 19, e296--e323

# FV deficiency--Treatment



### Main Replacement Product: Fresh Frozen Plasma (FFP)

| Spontaneous Minor Bleeding:<br>Mucocutaneous                                                                                                         | Spontaneous Major Bleeding:<br>CNS, GI, MSK                                                                                    | PROVOKED BLEEDING:<br>Post trauma and surgery                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| <ul> <li>Heavy menstrual bleeding:</li> <li>Oral contraceptives</li> <li>Progestin IUDs</li> <li>Endometrial ablation or<br/>hysterectomy</li> </ul> | FFP prophylaxis* to maintain FV<br>levels >20% of normal<br>Platelet transfusions and rFVIIa in<br>patients with FV inhibitors | FFP prophylaxis prior to<br>surgery to raise FV levels to<br>>25% of normal |  |
| Other bleeding:<br>Antifibrinolytics                                                                                                                 | Monitor volume status in at-risk patients                                                                                      |                                                                             |  |
| * Dranday lowing the other and to provide the landing                                                                                                |                                                                                                                                |                                                                             |  |

- \* Prophylaxis: treatment to prevent bleeding
- FV level of 20-25% should prevent most bleeding
- > Rare need for prophylaxis: Prophylaxis based on bleeding symptom severity rather than baseline FV level
- > If poor clinical response to treatment with FFP, think of inhibitor development



### **Treatment & Dosing**

- FFP: Initial dose ~ 20cc/kg; subsequent doses ~ 5cc/kg every 12 hours and adjusted based on FV levels and bleeding severity
- Pregnancy: levels > 15 U/dl are generally accepted for prevention of pregnancy loss
  - Regular prophylactic FFP started in patients at 33 weeks, 3–4 times per week during pregnancy and until wound healing after delivery
- Platelets: Provide alternate option as contain ~20% of circulating FV supply
- Antifibrinolytics: Aminocaproic acid and Tranexamic acid

 Recombinant FVIIa: Patients rarely develop inhibitors to FV after receiving exogenous FV, such as with FFP; can be measured with Bethesda assay

Asselta et al, Semin Thromb Hemost 2009; 35: 382-389; Girolanii et al, Haemophilia 2005; 11: 26-30; Bolton-Maggs et al, Haemophilia 2004; 10: 593-628; Younesi et al, Haemophilia (2013), 19, e296--e323

# FV deficiency—Future

- Resources for ongoing research and registries http://www.rarecoagulationdisorders.org /diseases/factor-v-deficiency/diseaseoverview
- Global Treatment Centre Directory <u>https://www.wfh.org/en/page.aspx?pid=</u> <u>1264</u>
- Patient organizations may also be found by searching the Orphanet website http://www.orpha.net/consor/cgibin/index.php
- Future needs in the field
  - Development of FV specific replacement products: Developed by Kedrion (Italy); not commercially available and outcomes in FV deficient patients need to be clarified
  - Gene replacement therapy



| Country            | Investigator                                                                              | Contact Information                                         |
|--------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Italy              | Dr. Flora Peyvandi<br>University of Milan<br>Hemophilia Center                            | flora.peyvandi@unimi.it                                     |
| The<br>Netherlands | Dr. Elisabetta<br>Castoldi<br>Maastricht University                                       | https://www.maastrichtuniversity.nl/e.castoldi/rese<br>arch |
| United States      | Dr Rodney Camire<br>Children's Hospital<br>of Philadelphia                                | https://www.research.chop.edu/people/rodney-m-<br>camire    |
|                    | Dr. David Ginsburg<br>University of<br>Michigan and<br>Howard Hughes<br>Medical Institute | www.lsi.umich.edu/labs/david-ginsburg-lab                   |
|                    | Dr. Kenneth Mann<br>University of<br>Vermont                                              | https://www.med.uvm.edu/biochemistry/lab_mann<br>_research  |
|                    | Dr. James Zehnder<br>Stanford University<br>Medical Center                                | http://med.stanford.edu/profiles/James_Zehnder              |
|                    | The American<br>Thrombosis and<br>Hemostasis Network<br>(ATHN)                            | http://www.athn.org/                                        |

Bulato C et al, Haemophilia. 2018;24:648-56

# Combined FV and FVIII Deficiency Role in clotting

F5F8D

- First reported by Oeri
   in 1954
- Low levels of both coagulation factors: Between 5% – 20%



Marta S et al, Set al, Set al, Thromb Hemost. 2009 Jun;35(4):390-9 ; Image: Alan E. Mast , Arterioscler Thromb Vasc Biol. 2016 January ; 36(1): 9–14.

# F5F8D – Diagnosis

## Inheritance

- Rare bleeding disorder: 1 in 1,000,000
- Due to a single gene defect
  - Mutations in LMAN1 gene (70%) and MCFD2 (15%) cause F5F8D
- Low levels of both coagulation factors; usually between 5% to 20%
- Genetic counselling important
- Autosomal Recessive
  - Males = females

#### **Autosomal Recessive Inheritance Pattern**



Image in the public domain\*

L HEMOPHILIA FOUNDATION

Marta S et al, Semin Thromb Hemost. 2009 Jun;35(4):390-9

## **Clinical Features**

#### • Symptoms:

- Mucocutanoeus bleeding
- HMB > 50% of affected women; bleeding after delivery not much known
- Excessive bleeding after circumcision was also reported in a high number of male patients
- Rare GI/CNS bleeding
- Neonatal intracranial hemorrhage has not been described in this condition

| Severity<br>Category | Levels   | Symptoms                                                                                                                 |
|----------------------|----------|--------------------------------------------------------------------------------------------------------------------------|
| Mild                 | >40%     | Asymptomatic, but might have problems with bleeding<br>during trauma, a surgical procedure or with<br>pregnancy/delivery |
| Moderate             | 20 - 40% | Mild spontaneous bleeding, or bleeding triggered by trauma, surgery, or pregnancy/delivery                               |
| Severe               | <20%     | May have spontaneous, severe, and even life-threatening bleeding                                                         |



Peyvandi F et al, Br J Haematol. 1998;100:773-6; Seligsohn U et al, N 2004;10:271-5; .Peyvandi F et al, Haemophilia. 2002;8:308-21.; Mansouritorgabeh H et al, Haemophilia. 2004;10:271-5.

# Laboratory Diagnosis

- Abnormal blood clotting test: PT and aPTT
  - PTT is disproportionately prolonged
- Perform both V+VIII levels when FV deficiency present
- FVIII deficiency (hemophilia A) can be distinguished from F5F8D by
  - X-linked inheritance
  - Normal PT among individuals with hemophilia A
- FV deficiency can be confused with F5F8D as both
  - Autosomal recessive disorders
  - Prolonged PT and PTT assays.
- FV deficiency associated with mild hemophilia A  $\rightarrow$  requires genetic analysis





# F5F8D--Treatment



#### Main Treatment Products: Fresh Frozen Plasma & FVIII Concentrate /DDAVP

| MINOR BLEEDING:<br>MUCOCUTANEOUS                       | MAJOR BLEEDING:<br>CNS, GI, MSK                        | Surgery                                                                                 | Pregnancy                                                                                                                                                                                                                                      |
|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GOAL<br>FVIII ≥ 30 IU/dI<br>FVIII<br>concentrate/DDAVP | GOAL<br>FVIII ≥ 50 IU/dI<br>FVIII<br>concentrate/DDAVP | GOAL: Infusions Q 12 hours to<br>achieve<br>FVIII ≥ 50 IU/dI<br>FVIII concentrate/DDAVP | <ul> <li>FVIII levels increase in pregnancy</li> <li>FV remains same: Levels linked to risk of bleeding</li> <li>Measure both factors elumination of blind to react an elumination of blacks</li> </ul>                                        |
| <b>FV ≥ 25 IU/dl</b><br>FFP- 15-25 ml/kg               | <b>FV ≥ 25 IU/dl</b><br>FFP- 15-25 ml/kg               | <b>FV ≥ 25 IU/dl</b><br>FFP- 15-25 ml/kg                                                | <ul> <li>In labor: Maintain FV<br/>levels &gt;15%, FVIII levels<br/>&gt;50%</li> <li>Epidurals can be<br/>performed</li> <li>Administer FFP (15–25<br/>mL/kg) during labor,<br/>with additional FFP (10<br/>mL/ka a12h) for ≥3 days</li> </ul> |

Antifibrinolytics are adjunctive treatment

Bolton-Magas et al, Haemophilia 2004; 10: 593-628;

Rare need for prophylaxis as mild to moderate bleeding severity

AL HEMOPHILIA FOUNDATION 14: 1201-1208; Mumfora et al, Br J Haematol 2014; 167(3):304-326 ; Mansouritorghabeh et al, J Thromb Haemost 2016; 14: 336-339; Peyvandi et al, Br J Haematol 1998; 100: 773-776; Spreafico et al, Haemophilia 2008; 14: 1201-1208



- > No clinical trials currently ongoing for F5F8D
- ➢ No FV concentrate available
- > Products for treatment of FVIII deficiency have improved substantially

#### **Registries and Databases**

- FranceCoagNetwork <u>http://francecoag.org/SiteWebPublic/public/Welcome.action?request\_locale=en</u>)
- Mutations causing RBDs: ISTH website <a href="http://www.isth.org/?page=RegistriesDatabases">http://www.isth.org/?page=RegistriesDatabases</a>
- National Center for Biotechnology Information <a href="https://www.ncbi.nlm.nih.gov/">https://www.ncbi.nlm.nih.gov/</a>
- PROspective Rare Bleeding Disorders Database <a href="http://eu.rbdd.org/">http://eu.rbdd.org/</a>

#### **Resources for Information**

- <u>http://www.rarecoagulationdisorders.org/diseases/combined-factor-v-and-factor-viii-deficiency/disease-overview</u>
- A map of the Certification of European Haemophilia Centres can be retrieved at <a href="http://www.euhanet.org/MappedCentres.aspx">http://www.euhanet.org/MappedCentres.aspx</a>.





- Increase in levels of Tissue Factor Pathways Inhibitor (TFPI) a due to a mutation in FV
- EAST TEXAS BLEEDING DISORDER:
  - First described in 2001
- FACTOR V AMSTERDAM :
  - First described in 2015



TFPlα

FXa



IONAL HEMOPHILIA FOUNDATION

# FV-Short bleeding disorders-Diagnosis

# Inheritance

- Rare bleeding disorder
- Prevalence not known
- Autosomal Dominant
  - Males = females
- Genetic counselling important

#### **Autosomal Dominant Inheritance Pattern**



Kuang SQ, et al Blood 2001; 97:1549–1554; Cunha ML et al, Blood 2015 125:1822–1825

### East Texas Bleeding Disorder: Clinical Features

| PATIENT<br>AGE IN YEARS / SEX | BLEEDING SYMPTOMS                                                                                                                                          | LABS                                                                                                             | TREATMENT                                                                                                                                                                                                            |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proband<br>35years / Male     | Bruising, epistaxis, gingival<br>oozing, bleeding post trauma<br>and surgery                                                                               | PT prolonged: 18.4 [11.1–13.1]<br>aPTT prolonged: 48.7 [25–34]<br>Modest variability in tests from<br>day to day | 2 PRBC* transfusions: After laceration & tooth extraction                                                                                                                                                            |
| 19 years / Sister 1           | Bruising, HMB, gingival oozing<br>with loss of primary teeth<br>needing packing, bleeding<br>post removal of ingrown toe<br>nail and post tooth extraction | PT prolonged: 13.7 [9.5–12]<br>aPTT prolonged: 51.1 [29–39]                                                      | After tonsillectomy bleeding after 3<br>days: PRBC* and <b>plasma transfusion</b><br><b>Hemorrhagic ovarian cyst</b><br>After appendectomy: PRBC*<br>transfusion<br><b>* No bleeding with L &amp; D</b> <sup>#</sup> |
| Sister 2                      | Epistaxis                                                                                                                                                  |                                                                                                                  | Delivery of 2 <sup>nd</sup> child: Excessive<br>bleeding needing a PRBC*<br>* No bleeding with L & D <sup>#</sup> of 1 <sup>st</sup> child<br>and after appendectomy                                                 |
| Brother                       | Bruising, Epistaxis, gingival<br>oozing,                                                                                                                   | PT & aPTT prolonged                                                                                              |                                                                                                                                                                                                                      |

\*PRBC: Packed red blood cells

<sup>#L & D: Labor and delivery</sup> Several patients followed: Males tend to be asymptomatic, women have more reproductive tract bleeding, have

used FEIBA 10-20 U/Kg

NATIONAL HEMOPHILIA FOUNDATION

Kuang SQ et al, Blood 2001; 97:1549-1554

### East Texas Bleeding Disorder: Identified in Indiana

| PATIENT<br>Age in years /sex | Symptoms                                                                                                                                                                                                        | LABS                                                                                                                                         | TREATMENT SO FAR                                                                                                                                                                                                                                                                            |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proband<br>19 / Male         | <ul> <li>Bruising</li> <li>Epistaxis</li> <li>Gingival oozing</li> <li>Bleeding after<br/>trauma &amp; surgery</li> <li>Delayed<br/>exfoliation of<br/>umbilical cord,<br/>delayed wound<br/>healing</li> </ul> | <ul> <li>PT prolonged</li> <li>aPTT prolonged</li> <li>Modest variability in these tests</li> <li>FVII normal</li> <li>VWF normal</li> </ul> | <ul> <li>Subgaleal hemorrhage at 7<br/>years</li> <li>PRBC, DDAVP, Humate P → No<br/>response</li> <li>NovoSeven 100 mcg/kg with<br/>good response, Amicar</li> <li>Periorbital hematoma at 11<br/>years         <ul> <li>3 doses of Stimate, Amicar<br/>for 14 days</li> </ul> </li> </ul> |

4 other family members diagnosed, one with normal PT/aPTT



## **FV Amsterdam: Clinical Features**

| PATIENT<br>AGE IN YEARS /<br>SEX | BLEEDING SYMPTOMS                                                                                                          | LABS                                                                                               | TREATMENT                                                                                                                                                  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proband<br>59 / Female           | Bleeding after trauma &<br>surgery, after tooth<br>extraction, surgery for<br>ovarian cyst                                 | aPTT mildly prolonged: 32<br>[22–30]<br>PT significantly prolonged:<br>24.9 [9.7–11.6]<br>FVII 46% | Blood transfusions after<br>adenoidectomy<br><b>PCC*</b> after removal of skin<br>lesion, bled after a week<br>After PPH: Blood + FFP +<br>PCC+ <b>TXA</b> |
| 25 / Son                         | <b>Prolonged bleeding</b><br><b>from umbilical stump</b> ,<br>bleeding of gums after<br>minor trauma, and easy<br>bruising | aPTT mildly prolonged 32<br>[22–30]<br>PT prolonged 17.9 [9.7–11.6]                                | PCC: Prolonged and<br>delayed bleeding for more<br>than a week after removal<br>of a wart on foot                                                          |

PCC: Prothrombin complex concentrate \*\* TXA: Tranexamic acid



Cunha ML et al, Blood 2015 125:1822–1825

# Laboratory Diagnosis

- Abnormal blood clotting tests
  - PT and/or aPTT
  - In some cases normal coagulation screen
- Perform TFPIa levels: Currently a research based test
- Genetic analysis
  - East Texas: F5 Heterozygous at nucleotide A2440G
  - FV Amsterdam: F5 Heterozygous at nucleotide A2350G



# FV-Short bleeding disorders- Treatment



## **Treatment Options**

#### Various treatments utilized

- rFVIIa (90-200 µg/kg) for acute major bleeding: Dose based on bleed
- FEIBA 10-20 U/Kg
- Prothrombin complex concentrate
- Antifibrinolytics: Aminocaproic acid or Tranexamic acid
  - Oral for minor bleeds and mucosal bleeds
  - IV for major bleeds
- As needed PRBC and FFP

#### Long-Term Prophylaxis

- East Texas BD extremely rare: No details of long-term prophylactic regimens
- High variability in bleeding phenotype
- Severe bleeding events most likely associated with trauma or surgery

Mast, Arterioscler Thromb Vasc Biol 2016; 36(1): 9-14; Wood et al, Blood 2014; 123(19): 2934-2943; Vincent et al, J Clin Invest 2013; 123: 3777-3787; Kuang et al, Blood 2001; 97: 1549-1554; Cunha et al, Blood 2015; 125: 1822-1825; Broze et al, J Clin Invest 2013; 123(9): 3710-3712; van Doorn et al, J Thromb Haemost 2017; 15(1): 140-149; van Doorn et al, J Thromb Haemost 2019; 17(7):1195



# FV-Short bleeding disorders – Future

- TFPI levels need to become available commercially
- Concizumab, a humanized monoclonal antibody against TFPI is administered subcutaneously and is under development treatment for hemophilia
  - This agent could theoretically be useful as prophylactic treatment of





# All Things 5

|             | FV DEFICIENCY                                                              | F5F8D                                  | SHORT FV-SHORT<br>BLEEDING DISORDERS           |
|-------------|----------------------------------------------------------------------------|----------------------------------------|------------------------------------------------|
| Inheritance | Autosomal Recessive                                                        | Autosomal Recessive                    | Autosomal Dominant                             |
| Severity    | Mild to severe<br>Bleeding phenotype<br>might not correlate<br>with levels | Mild to moderate                       | Mild to severe                                 |
| Treatment   | FFP<br>Antifibrinolytics                                                   | FFP + FVIII/DDAVP<br>Antifibrinolytics | Recombinant FVIIa / FEIBA<br>Antifibrinolytics |



# Summary

≻Rare bleeding disorders

>Mild to severe bleeding symptoms

Complete family history and laboratory work up for diagnosis

Genetic counselling important for future generations

>Treatment products need to be developed for FV

➢Future research needed





# **Session Evaluation**

### Take a few minutes now to fill out the session evaluation:

#### Rate this session

- Meaningful?
- Learned new ideas/skills?
- Will implement new ideas/skills?

# How could this session be improved?

#### **Comments?**

