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Some key challenges

" How to quantify the impact
at the transmission and
distribution level?
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" What are the opportunities
to mitigate this impact and
what is their true potential at | =
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=" How it impacts people?

% of daily energy consumption



Determinants of EV charging demand and flexibility

1. Behavior and Preferences

2. Charging Infrastructure 3. Controlled Charging
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SPEEch: Scalable and Probabilistic Estimates of EV Charging

= (Open-source: https://github.com/Stanford-Sustainable-Systems-Lab/speech

= Builds in “knobs” for scenario design based on driver behaviour
data
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Powell, S., Cezar, G. V. & Rajagopal, R, Scalable probabilistic estimates of electric vehicle charging given observed driver behavior."
Applied Energy, 309, 118382.


https://github.com/Stanford-Sustainable-Systems-Lab/speech

EV Demand Scenarios & 2035 Grid Dispatch

= Scenarios for interaction with infrastructure and controls
" Open-source model of WECC grid dispatch in 2035
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impacts of deep electric vehicle adoption. Nat Energy 7, 932-945 (2022). https://doi.org/10.1038/s41560-022-01105-7
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Daytime charging is the most critical driver of impact
High Renewables: 5X 2019
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What is the distribution grid impact?
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Current local DER control,
which aims to minimized
electricity cost X
Centralized DER control that
jointly optimizes for
reliability and cost
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= Centralized controller reduces required infrastructure upgrades
" Peak load: from 150% to 80% as compared to local control

Navidi, T., EI Gamal, A. & Rajagopal, R.. Coordinating Distributed Energy Resources for Reliability can
Significantly Reduce Future Distribution Grid Upgrades and Peak Load, revise and resubmit (Joule), 2023



How it impacts peo
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EV chargers detected by our NLP model
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Geospatial distribution (San Francisco)

Unequal access and unequal resilience
Inequity is significantly smaller across commercial installations

EV chargers documented in the NREL database

Solar PVs detected by DeepSolar

Oladeji, 0., Wang, Z., & Rajagopal, R. (2023). Where are the plugs? NLP-driven mapping of Electric Vehicle Charging Infrastructure from building permits. In

submission.



How to prepare the grid and manage charging?

Planning

Operations &
Technology

Economics &
Business Models

Determine infrastructure demand and
impact

Capacity planning with EVs and PV
Design stations for rapid deployment

Co-manage transport service and charging
in fleets

Manage lifecycle of battery systems
24x7 Carbon Free vehicle electrification

Efficiently price charging and network
services

Design contracts for EV flexibility

Assess preparedness for utilities and cities
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