A CANS in Canada

Drew Marquardt

University of Windsor

Canadian Neutron Initiative roundtable towards a National Neutron Strategy December 16, 2020

Sources of Neutrons

- Fission Reactor $\rightarrow U^{235} + n$ (thermal)
 - Expensive ~\$1B
- Spallation \rightarrow Hg/W(p,n)
 - Expensive ~\$1-2B
 - High energies
- Stripping-Reaction \rightarrow Be/Li(p,n)
 - Low energy = small footprint = inexpensive
 - Modular
 - Compact Accelerator Neutron Source (CANS)

Canadian CANS Coalition

University of Windsor-TRIUMF led initiative to construct and operate a Compact Accelerator-based Neutron Source (CANS)

- 2019 15 Researchers from 11 institutions from across Canada
- 2020 40 researchers from 19 institutions spanning 4 countries (Germany, Japan, USA and Canada)

Vision for CANS prototype

Conduct research using the following neutron methods:

- Small-angle neutron scattering
- Neutron Imaging/Diffraction
- Boron Neutron Capture Therapy

Relative Performance		Conventional Sources	CANS
High	5–10+	SNS (\$2B); ESS (\$3B)	
Medium	1	1010 (\$00010), NKU (>500010)	Canaua-scale facility (\$100 \$200M)
Medium-Low	1/5	MNR (>\$100M)	Our prototype* (\$10–\$12M** + 3 instruments)
Low	1/25		NOVA ERA* (\$6M11 + 6 instruments); LENS; RANS

Importance Domestically and Globally

- Neutron beams are available at 15 large centralized facilities
 Europe, the US, and East Asia
 - $\,\circ\,$ Many approaching the end of their life cycles.
- CANS role:
 - Possible replacement option for medium-flux nuclear reactors
 - Facilitate high-throughput or "workhorse" measurements
 - Preliminary or exploratory measurements prior to experiments at high brightness sources
 - Training facility to ensure expertise remains in Canada

Notable Accomplishments

- "The prospect of new neutron beam capability in Canada was seen by the reviewers as highly desirable as were the potential applications of this technology outlined in the submission."
- We have built an incredible team of world-leading experts from Japan, the US, Germany and Canada
- We have achieved membership in UCANS, an international network of CANS expertise.
- Co-PI Ming Pan was Canadian designate at an IAEA
- We secured the support of the Windsor Regional Hospital for production of F-18 and interest in Boron Neutron Capture Therapy.
- Secured support of key partners who have contributed substantial in-kind support and will continue to play important roles in the design of the CANS and its associated instruments.
 - TRIUMF, Canadian Nuclear Laboratories, Fedoruk Centre, and TVB Associates

Outlook and Next Steps

- Design study will continue preparing for the next funding opportunity strengthening our case for future funding opportunities.
- Strategy for future funding opportunities
 - Build from the success of "Building a Future for Canadian Neutron Scattering"
 - Position a CANS prototype as a part of a long-term solution, beyond the lifetime of international access agreements.
 - First step in realizing a pan-Canadian network of CANS.

Acknowledgements

- Daniel Banks (TVB)
- Zin Tun (McMaster/TVB)
- Dalini Maharaj (UWindsor/TRIUMF)
- Mina Abbaslou (UVic/TRIUMF)

RIUMF

• Ming Pan (WHR)

- Thomas Gutberlet (Julich)
- Oliver Kester (TRIUMF)
- Bob Laxdal (TRIUMF)
- Alex Gottberg (TRIUMF)
- <u>NFRF Team</u>

Fedoru

New Frontiers in Research Fund Fonds Nouvelles frontières en recherche

Canadian Nuclear Laboratories

Laboratoires Nucléaires Canadiens

